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ABSTRACT 

 High-utility itemset mining (HUIM) majors have done a lot of research 

lately, the past few years. Almost all published algorithms focus on processing static 

databases, which do not utilize previously mined information to mine incremental 

databases. To solve this problem, some incremental HUIM algorithms were 

published and showed the possibility of development. In this study, a new algorithm 

named iHUIM based on the EIHI algorithm was improved. Unlike EIHI, which 

requires twice database scans, the iHUIM just scans the database only once. 

Additionally, using compact utility lists and some pruning strategies, iHUIM shows 

outperformance EIHI regarding the length of execution time and has a slight 

improvement in memory consumption. 

 

Keywords: Compact Utility List, High-utility Itemset Mining, Incremental 

Databases, Data Mining 
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1. INTRODUCTION 

1.1. Motivation 

In the era of data explosion, knowledge discovery is receiving more research 

attention. One prominent area in there is Data Mining. Data Mining has been applied 

a lot in life and has contributed greatly to the business industry. In recent years, 

HUIM task has been focused on research because of the benefits it brings. Unlike 

Frequent Itemsets Mining (FIM), which searches for high-frequency itemsets, 

HUIM focuses on itemsets that bring high profits. Many algorithms have been 

developed to solve this problem for instance HUI-Miner, MLHMiner, 

HMiner,…However, most algorithms are developed to search on static databases, 

but in real life, the database will be continuously updated incrementally, requiring 

flexible and effective mining methods to handle that change. This is a challenge and 

it motivated us to research this topic. 

1.2. Related work 

HUIM is a task that extends the FIM task. HUIM focuses on finding an itemset which  

appears frequently in each transaction and has high profit. Almost all HUIM 

algorithms using the user-defined minimum utility threshold to consider an itemset is 

a HUI. In the early period of HUIM, based on Apriori [1] – an FIM algorithm, 

researchers proposed a concept that was suitable for HUIM, named TwoPhase. Main 

process includes generating candidates in one phase and determining which set is 

high-utility sets based on those candidates in the other phase. Some algorithms using 

this concept may be mentioned as: Two-Phase [2] , UP-Growth [3], and UP-Growth+ 

[4]… This concept effectively eliminates the candidates and precisely identifies a 

comprehensive set of HUIs. Nevertheless, these algorithms also face time-consuming 

and intensive memory challenges when handling long transactions or threshold is set 

too low. To overcome these challenges, many studies in the subsequent phase aimed 

to overcome these drawbacks. The algorithms that have one-phase are proposed like 

HUI-Miner [5], FHM [6], EFIM [7], and HMiner [8] to reduce computation time and 

minimize memory usage. 
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The proposed algorithms mentioned above have shown high efficiency and 

practical applications. But in real life, a store's database continuously grows over 

time as transactions are recorded and updated either in real-time or at regular 

intervals. Therefore, the database becomes increasingly larger. In this case, even if 

the algorithm works effectively in a static database, these still have a problem with 

memory usage and execution time. When adding a small number of transactions, 

previous algorithms still require rescanning the whole database. This is time-

consuming, wastes resources and does not take advantage of the results of the 

previous calculations. Therefore, a new problem has attracted researchers to explore 

and find a solution: high utility itemset mining on incremental databases. 

It is obvious that many researches about incremental high-utility itemsets 

mining have been done and got good results. Basically, incremental HUIM 

algorithms can be classified into three main categories: list-based, tree-based and 

Apriori-based approaches. 

Forward to 2012, Lin et al [9] suggested an algorithm called FUP-HUI-INS. 

This algorithm's core is the Fast Update concept (FUP). When a new transaction 

was added, it was treated as 1 in 4 cases: small-small, small-large, large-large or 

large-small. The disadvantage of this concept is the large search space and it 

increases exponentially. The authors continued their research and proposed an 

algorithm called PRE-HUI-INS [10], applied the pre-large concept by Hong et al 

[11] and the TWU model using tree-base structure; It employs a level-wise approach 

for mining updated HUIs [12]. A pre-large itemset is not genuinely considered large 

but is expected to become large at a later time [11]. After labeling, itemsets were 

divided into one of nine cases. Only a few cases needed to be considered because 

they affected the formation of HUIMs. PRE-HUI-INS demonstrated efficiency 

compared to the HUIM algorithms for static databases and reduced the count of 

database scans in comparison to FUP-HUI-INS [9]. Following that, two algorithms, 

PRE-HUI-MOD [13] and PRE-HUI-DEL [14], were proposed. PRE-HUI-MOD 

was found to have the shortest runtime but required more memory compared to the 

three algorithms used for comparison: Two-Phase, HUI-Miner and FHM. The PRE-
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HUI-DEL algorithm ran faster in most cases but became less efficient when faced 

with a large number of deleted transactions. In [15], the authors developed the 

PIHUP (Pre-large Incremental High Utility Patterns) algorithm that scanned 

databases only once. When new transactions were added, the PIHUP-tree was 

updated based on the pre-large concept. 

The HUI-List-INS algorithm was suggested in paper [16] for Mining High 

Utility Itemset when adding new transactions. This algorithm uses a data structure 

that was first used in HUI-Miner named Utility list. The utility list contains both 

utility details regarding the itemsets and heuristic information indicating whether 

prune should be applied to the itemsets [17]. To construct a utility list of larger 

itemset, we only need to join the utility list of smaller items. Using utility lists also 

helps to prune by remaining utility of an item. Beside advantage, utility list requires 

additional memory to store heuristic information that is prepared for prunning 

strategies. An extension of HUI-List-INS, HUI-List-DEL [18] was proposed in 

2016. In the same year, Philippe et al [19] published the EIHI (Efficient Incremental 

High-utility Itemset) algorithm. This algorithm effectively combined list-based and 

tree-based structures. Utility lists were built for each itemset and transaction, while 

HUIs were represented in a trie-like structure. The flexible use of these two 

structures, combined with LA prune optimization, allowed EIHI to demonstrate 

superior efficiency in terms of runtime while maintaining similar memory 

requirements to HUI-List-INS. 

In 2017, Unil Yun and colleagues developed an efficient algorithm with one 

database scan called LIHUP [20]. The authors used a global list structure that 

contained utility lists of candidates. Updating the global list did not require 

rescanning the original database, resulting in less time consumption. This thesis 

proposed a technique to enhance the efficiency of the updated data structure through 

a restructuring procedure and reflect newly added transactions by scanning them, 

rather than the entire database, just once. 

Incremental HUIM has done much research in recent years. Many solutions 

were proposed to resolve the problem of memory consumption and execution time. 
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Pre-large concept, utility list, CUList, and many pruning strategies work effectively 

when applied to build an algorithm. We expect to combine some method pruning 

and data structure to enhance the performance of the HUIM algorithm. 

1.3. Objectives 

The aim of this research is to enhance the efficiency of the algorithm used in High 

utility itemset mining on incremental databases. We present EIHI's extension 

algorithm that uses the Modify Compact Utility List (MCUL) data structure to store 

information while conducting the mining process. Based on the data compression 

advantages of the CUList structure, combined with pruning strategies and efficient 

use of using trie-like structure to store High-utility itemset after mining, thereby 

shortening calculation time and improving performance. 
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2. METHODOLOGY 

2.1. Preliminaries 

Within this section, we provide the definitions for important terminologies utilized in 

this study. The essential definitions and the statement of the problem are as follow: 

Given 1 2{ , ,... }mI i i i is a finite set of m items. X is a finite collection of items, 

denoted as X I . An itemset 1 2{ , ,... }kX i i i is k-itemset, where k is the length of X 

and ki is the last item in X. 

Each item i I has a positive integer ( )pr i  that associated with it is called price of 

an item. 

1 2{ , ,... }nD T T T  is an original transaction database that contains a collection of 

transactions, each transaction is identified by idT .  

( , )idq i T is the quantity of i  in idT . 

N is additional transactions incorporated into the original database. 

U represents the database after adding new transactions U D N   

Table 1 illustrates an example original database, example of new transaction N is 

provided in Table 2 and Table 3 is sample price table. 

Table 1: An original database D 
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Table 2: A sample of new transaction N 

 

Table 3: A sample price table 

 

Definition 1 (Utility value):   

● The utility of an item xi in a transaction idT is calculated by multiplying the 

utility of item and its quantity, denoted as:  

  ( , ) ( , ) ( )x id x id xu i T q i T pr i   

● The utility of an item xi in database is calculated by following formula: 

,

( ) ( , )

x id id

x x id

i T T D

u i u i T
 

   

● The utility of an itemset X in a transaction idT , denoted as ( , )idu X T , is 

calculated by following formula: 

( , ) ( , )

x

id x id

i X

u X T u i T


  

● The utility of an itemset X in database D, denoted and calculated as: 

  
,

( ) ( , )

id id

id

X T T D

u X u X T
 

   

● The utility of a transaction ( )idu T  is total utility of all items belong in 

transaction idT , formula is: 

  
,

( ) ( , )

x id

id x id

i X X T

u T u i T
 

   

From Table 1:  

Utility of item {a} in T1 is:  

 

Utility of item {a} in database is:  
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Utility of { , }X a b in transaction T1 : 

 

Utility of { , }X c d in database is: 

 

Utility of transaction 3T  is calculated as:  

   

Definition 2 (Transaction weighted utility):  The transaction-weighted utility of an 

itemset ( ( )TWU X ) is the summing up of the transaction utilities of all transactions 

that X belong to. The formula is: ( ) ( )

id

id

X T D

TWU X u T
 

   

As an illustration, with itemset { }X b , 1 2( ) ( ) ( ) 30 20 50TWU X u T u T      

The TWU of 1-itemsets are shown in Table 4 below. 

Table 4: Transaction weighted utility of 1-itemset 

 

The TWU of larger itemsets are calculated similarly. Consider itemset { , }X a b , 

TWU value of X is 1( ) ( ) 30TWU X u T   

Property 1 (TWU pruning strategy):  

For any itemset X, if TWU of X is less than minUtil then TWU of all any suppersets 

of X is also less than minUtil. Mathematically, If ( ) minTWU X Util  then 'X X  , 

we have ( ') ( ) minTWU X TWU X Util  . 

From Table 4, let minUtil=30 , itemset { }X g has ( ) 27 minTWU X Util  . 

According to Property 1, any supersets of {g} cannot be greater than 27. Therefore, 

this itemset is pruned from search space and superset of X do not need to be formed. 

Definition 3 (Order of items): 

For the purpose of this work, we sorted all items in the database according to TWU 

of each item in ascending order.  

The ordering of items in this example is: , , , , , ,g f b d a e c  

Table 5 below shows the database after sorting by TWU. 
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Table 5: The database after sorted by the order of TWU 

 

Definition 4 (Set of items after an itemset):  

In sorted transaction idT , the collection of all items after X is denoted as /idT X . The 

overall count of items in this set is ( / )ids T X  

For instance, in Table 5, consider { , }X g a : 

Set of all items after X in transaction 4T : 4 / { , }T X e c  

Total number of items after X in 4T : 4( / ) |{ , } | 2s T X e c   

Definition 5 (Remaining utility):   

● The calculation of the remaining utility of  X in a transaction involves 

summing up the utility of all items after X in transaction. The formula is:  

 
( / )

( , ) ( , )

x id

id x id

i T X

ru X T u i T


   

● The remaining utility of an itemset in database is denoted and calculated as:  

   

In Table 5, consider itemset { , }X b d  in 1T : 

 Set of item after X in 1T is { , , }a u c . So, the remaining utility of X in 1T is:  

  

 In sample database, itemset X appears in two transactions: 1 2,T T  .  

 Therefore, remaining utility of X in database is: 
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Definition 6 (Extension of itemset): 

In the set of all items after ordering by TWU, extension of itemset X is all items after 

X. The number of all X’s extensions if denoted as ( )c X . 

From the order that presented in previous, the extension of itemset { , }X f d is 

{ , , }a c e and ({ , , }) 3c a c e   

Definition 7 (Closed utility of itemset):  

● Closed utility of an itemset X in transaction idT , is calculated as:  

   

 In formula, ( )kc X i  is the number of items in extension of X except last item 

● Closed utility of an itemset X with size ≤ 2 in database, denoted and calculated 

as:  ( ) ( , )

id

id

X T D

cu X cu X T
 

   

For instance, in Table 5: 

Closed utility of itemset { }X g  in 4T is 4( , ) 0cu X T  because | | 1X   

Consider itemset { , }X d c  in 1T : 

Following are steps to calculate closed utility of itemset X in transaction 1T : 

Firstly, the number of items in itemset X is | | 2 1X    

Secondly, the number of set of X’s extension except last item is   

  

Finally, total number of item after X exclude last item is 

 1 1( / ( { })) ( / ) |{ , , } | 3s T X c s T d a e c     

 Therefore, 1 1( , ) ( , ) 7cu X T u X T   

 

Closed utility of X in database is 1 2 3( ) ( , ) ( , ) ( , )cu X cu X T cu X T cu X T    

2 3( , ) and ( , )cu X T cu X T values are calculated similarly with 1( , )cu X T  that 

presented before. 
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Because 2 3( / { }) |{ , } | 2 3 and ( / { }) |{ , } | 2 3s T X c e c s T X c a c        , so 

2 3( , ) ( , ) 0cu X T cu X T  . Therefore, 1( ) ( , ) 7cu X cu X T   

Definition 8 (Closed remaining utility): 

● Closed remaining utility of an itemset X in transaction idT , is denoted and 

calculated as:  

 
● Closed remaining utility of an itemset X with size ≤ 2 in database, denoted and 

calculated as: ( ) ( , )

id

id

X T D

cru X cru X T
 

   

For example, in Table 5: 

Closed remaining utility of itemset { }X e in 2T is 2( , ) 0cru X T  because | | 1X   

Consider itemset 4{ , } in X a e T : 

Following steps are used to calculated the closed remaining utility of X in 4T : 

Firstly, calculating the number of item in X: | | 2 1X    

Secondly, calculating the number of item after X exclude last item in ordered 

set of all item: ( { }) |{ , }| 2c X e e c    

Finally, calculating the number of item after X exclude last item in 4T : 

4 1s(T / { }) ( / ) |{ , } | 2X e s T a e c     

Therefore, 4 4( , ) ( , ) 6 6 12cru X T ru X T     

Consider itemset { , }X d a in database: 

Closed remaining utility of X in database is 1 3( ) ( , ) ( , )cru X cru X T cru X T   

Process of computing 1 3( , ) and ( , )cru X T cru X T are similar to previous. 

Because 1 3( / { }) |{ , , } | 3 and  ( / { }) |{ , } | 2 3s T X a a e c s T X a a c       , 

so 1 1 3( , ) ( , ) 4 and ( , ) 0cru X T ru X T cru X T    

Therefore, 1( ) ( , ) 4cru X ru X T   

Definition 9 (Non-closed utility and non-closed remaining utility of itemset): 

 The definition of non-closed utility of an itemset is:  

( ) ( ) ( )nu X u X cu X   
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 The definition of non-closed remaining utility of an itemset is:  

  ( ) ( ) ( )nru X ru X cru X   

For example, itemset { , }X d c  has ( ) ( ) ( ) 19 7 12nu X u X cu X      and 

( ) ( ) ( ) 19 9 10nru X ru X cru X     . 

Definition 10 (High-utility itemset): 

An itemset is called a high-utility itemset (HUI) if its utility is equal to or greater than 

a user-defined minimum utility threshold (minUtil). Alternatively, it is referred to as 

a low-utility itemset. 

For example original database, let minUtil=30, itemsets { , },  { , , }b d a c e  with utility 

values 30 and 36 respectively, are HUIs. Itemset { , }a g is an example of a low utility 

itemset. 

Property 2 (Downward closure): 

For any itemset X, if X is not a high-utility itemset, any superset of X is not a high-

utility itemset. 

This property brings an efficient way to reduce the number of candidates in the 

candidate generation phase. That means if an itemset X is not a HUI, it does not need 

to form a superset of X anymore. 

Property 3 (U-Prune): 

If the cumulative suffix utility of X is below the minUtil threshold, then none of the 

supersets of X qualifies as a high-utility itemset. That is, if  ( ) ( ) minu X ru X Util   

then ' , 'X HUIs X X   . 

Property 4 (LA-Prune): 

Given two itemset X and Y, if 

,  

( ) ( ) ( ) ( ) ( , ) ( , ) min

j j j

j j

T D X T and Y T

cu X cru X nu X nru X nu X T nru X T Util
   

       

then '  and ' ,  ' 'Y Y X X X Y HUIs     

Two properties 3 and 4 are proposed and proof in [8]. 
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2.2. Problem definition 

Given a transaction database D, new transactions N, a minimum utility threshold 

minUtil-specific by user, the objective is to mine all HUIs with minimum cost of 

utilization of memory and the time taken for execution.  

The set of all HUIs found in original database D is called H. The set of all HUIs found 

when added new transactions N is called H’. 

For example, with min 30Util  , the set H is all HUIs in D is presented in Table 6. 

After adding new transaction N, ' { , }H H be bce  is the set of HUIs found and 

updated utility value of existing HUIs are presented in Table 7. 

Table 6: The set H of all HUIs found in D 

 

Table 7: The set of all HUIs found in U 

 

2.3. Proposed algorithm 

2.3.1. Modified Compact Utility List Structure 

The first time Compact Utility List was introduced is in paper [8]. Authors presented 

form of CUList include: ( ), ( ), ( )cu X cru X cpu X and 

. This structure, according to 

experiments conducted by authors, shows efficiency in compactly storing 
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information and during mining process. Results show reduction in utility list size for 

both sparse and dense datasets [8]. 

Based on that result, we modify CUList to fit our process and strategy. A 

Modify Compact Utility List (MCUL) of an itemset is a data structure that contains: 

cu(X), cru(X) and list of quintuples , ( , ), ( , )id id idT nu X T nru X T  . The overall 

structure of MCUL is presented below. 

 

Figure 1: Modified Compact Utility List 

2.3.2. HUIs storage structure 

After finding an itemset X is a HUI, we need a structure to store HUI and a 

mechanism to quickly retrieve and update utility of itemsets. A trie-like [8] is 

proposed for this reason. In trie, an item is a node and an itemset is a path from the 

root. Last node in the path, in addition to representing the last item, also contains the 

utility value of that itemset. This design allows easy modification of the utility value 

of an itemset when detecting the updating of HUIs. 

For previous result, an example of HUIs found in D that stored in H is present in 

Figure 2.  
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Figure 2: Example of HUI-trie structure 

According to Table 7, when database is updated, { } and { }be bce are two new HUIs. 

Utility values of some existing HUIs are updated. Part of those updates are shown in 

Figure 3 below. 

 

Figure 3: Example of updated HUI-trie 

2.3.3. iHUIM Algorithm 

This section presents our algorithm, named iHUIM algorithm. First, the inputs 

of Main procedure (algorithm 1) are transaction database D (for the first time) or N 

(when we want to add new transactions) and minUtil threshold specific by user. Main 
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process starts by scanning database to build MCUL of each distinct item and calculate 

TWU of them. If the item was processed in previous, the MCUL and TWU values 

are still needed to be updated. Then, sort MCUL of all items according to ascending 

TWU and store MCUL of all items that have TWU larger than minUtil. Second, 

Restruct procedure (algorithm 2) will be called to restruct each MCUL in MCULs. 

After that, the Search procedure (algorithm 3) starts first with prefix = null, the list 

of all MCUL and minUtil, then this algorithm is called recursive to find all HUIs. 

 

Algorithm 1: Main 

Input: D (or N), minUtil 

Output: HUIs 

1:  foreach transaction T in D do 

2:      foreach item X in T do 

3:    create or update MCUL(X), TWU(C) 

4:       end for 

5:  end for 

6:  Sort All_MCULs according to TWU 

7:  if TWU(X) ≥ minUtil then 

8:        MCULs X 

9:   FinalMCULs = Restruct (MCULs)  

10:   SearchHUI (null, FinalMCULs, minUtil) 

 

Algorithm 2 takes input as a list of MCUL that have minTWU Util . This 

procedure starts from lastMCUL in the list. For each element ex in lastMCUL, 

algorithm calculates the sum of ex.nu and ex.nru to store in TempTable in the ex.tid 

index (Line 3). Then calculating the remaining utility of each element in MCUL 

before lastMCUL by taking the value according to the ey.tid index in TempTable 

(Line 7). Line 8 updates the value in TempTable by the sum of ey.Nu and ey.Nru. 

After every MCUL was processed, return FinalMCULs after restructuring (Line 11). 
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Algorithm 2: Restruct 

Input: MCULs  

Output: FinalMCULs  

1: lastMCUL = Last MCUL in MCULs 

2:  foreach ex ∈ lastMCUL do 

3:    TempTable(ex.tid) ← ex.nu + ex.nru 

4:   end for 

5:   foreach Y before lastMCUL in MCULs do 

6:     foreach ey ∈ Y do 

7:    ey.nru ← TempTable(ey.tid) 

8:    TempTable(ey.tid) ← ey.nu + ey.nru 

9:            end for 

10:  end for 

11:  Return FinalMCULs 

 

Algorithm 3 (SearchHUI) takes input as prefix-item, FinalMCULs and minUtil 

value. For each item X in FinalMCULs, first check the condition to be a HUI (Line 

2-3). If yes, X is HUI. If not, check pruning condition was discussed in Property 3 

(Line 5). If the property is satisfied, call ConstructExtOfX (Line 6) then call 

SearchHUI algorithm for item X and extension of X (Line 7). 
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Algorithm 3: SearchHUI 

Input: prefix-item, FinalMCULs, minUtil   

Output: HUIs 

1:  foreach X in FinalMCULs do 

2:    if u(X) = nu(X) + cu(X) ≥ minUtil then 

3:           HUIs ← X 

4:   end if 

5:   if u(X) + ru(X) ≥ minUtil then 

6:             exMCULs = ConstructExtOfX(X, MCULs) 

7:            SearchHUI (X, exMCULs, minUtil) 

8:   end if 

9:   end for 

 

Algorithm 4 presents the process of constructing extension MCUL 

(exMCULs) of prefix X. Line 1-3 process each MCUL Y after X in FinalMCULs, 

initialize extension MCUL of Y called Pxy and uLA value to prepare for LA-prune. 

Line 4 traverses each element ex in X to find element ey in Y that satisfy ey.tid =ex.tid 

(Line 5). Line 6 add element ey to Pxy if found ey. Line 7 handles case where ey 

doesn’t exist. uLA value will decrease by (ex.nu + ex.nru) and then check LA-prune. 

If not satisfy, stop construct Pxy. Line 13 add Pxy into exMCULs. Line 15 returns 

output of Algorithm 4 is exMCULs of prefix X. 
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Algorithm 4: ConstructExtOfX 

Input: X: MCUList Prefix, FinalMCULs, minUtil   

Output: exMCULs 

1:  foreach Y after X in FinalMCULs do 

2:          Pxy = {} 

3:    ULA = nu(X) + nru(X) + cu(X) + cru(X) 

4:   foreach element ex in X do 

5:                if ∃ ey ⊂ Y && ey.tid = ex.tid then 

6:                Pxy ← Pxy U {ey} 

7:         else: 

8:                ULA = ULA - (ex.Nu + ex.Nru) 

9:      if ULA < minUtil then 

10:    stop construct Pxy 

11:     end if 

12:    end for 

13:    exMCULs ← exMCULs U {Pxy} 

14:  end for 

15:  Return exMCULs 

  

When adding new transactions (N), a naïve approach to find the set H’ in N, 

given D and H is applied to Algorithm 1 on database U. It is inefficient because it 

would mine from scratch that does not take advantage of results from previous 

mining. One more reason is the abundance of itemsets appearing in D may not appear 

in N. From these observations, three properties below describe applying pruning 

techniques to decrease the search space and maximize the advantage of previous 

minings. 



 

25 | P a g e  
 

Property 5 (Pruning condition 1): Let X is HUI appearing in D but not in N 

and denote U=D U N. The utility of X in U is the same as in D. So, if X is a HUI in 

D, it is also a HUI in U. Similarly, if X is not HUI in D, it is still not HUI in U.  

Property 6 (Pruning condition 2): If MCUL of itemset X in N is empty, then 

X and all extensions of X do not need to be explored. 

Property 7: For any itemset X, if the combined value of utility and remaining 

utility in dataset D, along with the utility and remaining utility in dataset N, is below 

the minUtil threshold, then both X and its extensions are considered low-utility 

itemsets.  
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3. EXPERIMENTS 

3.1. Data preparation 

To benchmark iHUIM algorithm, three datasets Chess, Mushroom, Fruithut are used. 

These Datasets are acquired or retrieved from the SPMF open-source platform data 

mining library [21]. Properties of these datasets such as: |D| presents transaction 

count of database D, |I| presents the count of unique items in the database, AvgLen 

calculates the average length of transaction, and is provided in Table 8 below. 

Table 8: Characteristic of datasets 

Dataset |D| |I| AvgLen Type Has real utility value 

Chess 3196 75 37 Dense No 

Fruithut 181970 1265 3.58 Sparse Yes 

Mushroom 8124 119 23 Dense No 

 

3.2. Experiments setup 

All experiments are carried out in an environment with the following configuration: 

Intel® Core I7, 2.20GHz, 16GB RAM, Microsoft Window 11. We implemented our 

algorithm- iHUIM and compared it with the EIHI algorithm to evaluate 3 criterias: 

number of generated candidates, execution time and memory usage. We run 

experiments with various parameters. We set up parameters by fixing minUtil varying 

addRatio and fixing addRatio varying minUtil. Each pair of parameters, we run 5 

times then calculate the average of them. 
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3.3. Results and Analysis 

3.3.1. Number of generated candidates 

 
 

a-Chess-addRatio=20% b-Chess-addRatio=25% 

 
 

c-Fruithut-addRatio=20% d-Fruithut-addRatio=25% 

  

e-Mushroom-addRatio=20% f-Mushroom-addRatio=25% 

Figure 4: Comparison of number of generated candidates 
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In the first experiment, we evaluated the number of generated candidates that 

can be reduced by our algorithm. Figure 4 illustrates the count of candidates for two 

algorithms that execute with dissimilar databases with different minUtil values. As 

shown in Figure 4, the iHUIM reduces the large number of candidates compared with 

EIHI. For example, when running the algorithm with a Chess dataset, iHUIM can 

reduce over 68% of candidates compared to EIHI in case minUtil=580000 and 

addRatio=25%, or with Fruithut dataset, the candidate generated by iHUIM less than 

70% in case minUtil=500000 and addRatio=20%. Throughout all test cases, iHUIM 

showed outperformance when the candidate generated by iHUIM was quite fewer 

than EIHI.  

 

3.3.2. Execution time 

  

a-Chess-addRatio=20% b-Chess-addRatio=25% 

  

c-Fruithut-addRatio=20% d-Fruithut-addRatio=25% 
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e-Mushroom-addRatio=20% f-Mushroom-addRatio=25% 

Figure 5: Comparison of execution time 

In this section, we assess the runtime of the algorithms under varied minUtil 

or addRatio. The runtime of our algorithm to process each of the three datasets is 

demonstrated in Figure 5. Figure 5a and 5b shows clearly that iHUIM is quite faster 

than EIHI in each test case. When we run both algorithms with the Mushroom dataset 

and the Fruithut dataset, our algorithm is just slightly better than EIHI. With 

Mushroom, iHUIM reduces runtime in the range of 5% to 14% according to different 

parameters (Figure 5e, 5f), and with Fruithut, the average runtime our algorithm uses 

less than the EIHI is 10%. But with the Chess dataset, our algorithm is clearly faster 

than EIHI, the runtime when minUtil=58000 is just 5,46 seconds when EIHI peaks 

at 22,31 seconds.  As the experiment shows, the iHUIM algorithm can reduce runtime 

for incremental HUI mining. 

 

3.3.3. Memory usage 

  

a-Chess-addRatio=20% b-Chess-addRatio=25% 
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c-Fruithut-addRatio=20% d-Fruithut-addRatio=25% 

 
 

e-Mushroom-addRatio=20% f-Mushroom-addRatio=25% 

Figure 6: Comparison of memory usage 

Memory consumption is the last evaluation criterion. Figure 6 reports the 

memory usage of iHUIM and EIHI when processing each of the three datasets. As 

the chart shows, our algorithm uses less memory than EIHI in most cases. The 

difference is not too much in Chess and Mushroom datasets but iHUIM significantly 

reduces memory consumption in the Fruithut dataset. The reason may come from 

MCUL, which can work effectively in a database that has a sparse density. In cases 

when MCUL achieves compression, memory usage can be lower. For example, with 

the Fruithut dataset, in case addRatio=25%, iHUIM reduces to 30% memory 

consumption, compared with EIHI. However, the use of MCUL for dense databases 

needs to be researched and modified in the future. 
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4. CONCLUSION AND FUTURE WORK 

This thesis introduced the iHUIM algorithm that extends the EIHI algorithm. Unlike 

EIHI, our algorithm modifies Compact Utility List structure to store information of 

each item and scans the database once to build MCUL. Besides, our algorithm also 

has strategies to prune items that can’t be HUIs before and during the mining process. 

Experimental outcomes demonstrate the efficacy of the pruning strategies. when the 

number of candidates generated by iHUIM is much smaller than that of EIHI. iHUIM 

also shows efficiency in terms of time but has limitations for sparse databases. 

In the future, we will study and optimize the performance of iHUIM algorithm. 

Data structure is an aspect to optimize. We will continue to modify CUList or 

consider other efficient data structures to gain the efficiency of execution time and 

memory usage. 
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