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Abstract 

The exponential growth of e-commerce in recent years has transformed the 

fashion industry, propelling it into a new era of digital retail. With the convenience 

of online shopping, consumers now have access to an extensive array of fashion 

products from the comfort of their homes and as a result in need of more efficient 

and personalized shopping experiences. This demand paved the way for the 

advancement of recommendation and retrieval systems in fashion e-commerce. In 

this thesis, we build a system plan to streamline and enhance the retrieval of fashion 

outfits from vast and diverse collections. Our system consists of two components, a 

multimodal model to retrieve image items matching a textual description, and a 

network incorporating hashing modules to capture high-order interactive 

compatibility between fashion items, facilitating efficient and personalized fashion 

outfit recommendations. Through extensive experimentation and evaluation, we 

demonstrate the effectiveness of our system in providing accurate and personalized 

fashion outfit recommendations with desired descriptions by the consumers, like a 

particular color, style, occasion, season, and many more.   

Keywords — Fashion Retrieval, Outfit Recommendation, Representation Learning, 

Hashing 
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Chapter 1: Introduction 

1.1. Overview  

 The fashion industry, with its ever-evolving trends and creative expressions, is a 

dynamic landscape characterized by ever-changing trends, styles, and personal 

preferences. The field has traditionally been driven by the instincts and intuitions of 

designers, fashion houses, and trendsetters. However, the advent of machine learning 

has introduced a new dimension, one where data-driven insights and algorithms 

wield significant influence. This evolving relationship between technology and 

fashion has recently captivated the industry, representing a profound shift. 

 The fusion of fashion and technology holds a multifaceted allure, grounded in 

several compelling factors. Machine learning, a subfield of artificial intelligence 

(AI), possesses the extraordinary capacity to extract intricate patterns from vast 

datasets, making it an ideal tool for decoding the complexities of fashion. From 

predictive analytics that anticipate the next big trend to personalized shopping 

experiences that cater to individual tastes, the potential applications are manifold. 

 One of the most captivating developments in the fashion domain in recent times 

is the emergence of fashion item retrieval systems, especially in the context of 

composite outfits. As the number of items within each garment category increases, 

the potential combinations for outfits grow exponentially. Given the typically vast 

size of fashion inventories, the sheer magnitude of possible outfits that can be 

curated from these items becomes orders of magnitude greater. The task of mining 

fashion ensembles from an extensive inventory poses significant challenges, 

underscoring the necessity for intelligent fashion recommendation techniques [1]. 

Furthermore, the concept of employing prompts to suggest fashion apparel is 

relatively new in this field, particularly in the context of recommending multiple 

harmonious items simultaneously. Consequently, our objective was to address this 

challenge. 
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1.2. Related works 

1.2.1. Content-based Fashion Retrieval 

 Content-based fashion image Retrieval (CBFIR) methods retrieved the desired 

fashion items or products from the queried reference in the form of image, text, or 

visual clue [2]. The predominant focus within this task revolves around the 

utilization of referenced images or multimodalities (i.e., image and text) to retrieve 

desired fashion products for a user. Rubio et al. 2017 [3] leverage both the images 

and textual metadata and propose a joint multi-modal embedding that maps both the 

text and images into a common latent space, helping effectively perform retrieval in 

this space. They utilize a loss consisting of both the contrastive loss and the weighted 

sum of the cross-entropy classification losses to train both the text network and the 

image network. Shin et al. 2019 [4] propose a style feature extraction (SFE) layer 

that decomposes the clothes vector into style and category. They append the layer to 

the Siamese CNN and train with a loss function composed of softmax loss, 

contrastive loss, and center loss to predict stylish matching clothes effectively. Zhu, 

J. et al. 2023 [5] introduce new modules called Fine-Granular Aggregator and 

Attention-based Token Alignment to exploit both the overall and detailed 

characteristics of clothing images. 

 In recent times, contrastive learning has emerged as a prominent method for 

acquiring meaningful representations of concepts within the field of machine 

learning. This approach is grounded in the notion that concepts with semantic 

connections (for instance, two images of the same object captured from different 

angles) should exhibit similar representations, whereas unrelated concepts should be 

distinctly represented. Radford, A. et al. 2021 [6] introduced CLIP which represents 

a multimodal neural network for vision and language, trained using contrastive 

learning to establish associations between visual concepts and text. The model 

consists of separate encoders for vision and text, each followed by a linear layer that 

projects the image and text representations into the same latent space. 
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 The goal of CLIP is to position images and corresponding descriptions (like an 

image of a red shirt and the description "a red shirt") close together in vector space. 

Specific to the fashion industry, Chia et al. 2019 [7] trained their CLIP model on a 

fashion dataset containing 800k products. The model, called FashionCLIP, is shown 

to learn general concepts to be transferable across tasks in the domain. We leverage 

this model to retrieve fashion items from a textual description. 

1.2.2. Outfit Recommendation  

 In recent years, there has been rising enthusiasm for the creation of intelligent 

fashion recommendation systems. These systems aim to assist users in finding and 

buying clothing and accessories that align with their styles. Given the vast array of 

outfits created from a diverse selection of fashion items, there is a heightened focus 

on personalized outfit recommendations. This involves suggesting outfits that cater 

to users' styles and align with their specific preferences. The increasing interest in 

this personalized approach underscores its growing importance in the fashion 

industry. This section provides the work that has been done on this problem. 

 The earliest approach to date is the use of a functional tensor factorization method 

to model the interactions between user and fashion items by Hu et al. 2015 [8]. They 

use gradient boosting together with a learning-to-rank formulation to optimize the 

model. However, their model is still limited since they did not use a deep learning 

approach. Another approach is to use the pairwise model compatibility between 

fashion items [9] [10] using the Siamese network or triplet loss. However, these 

methods lack the incorporation of the outfit's textual semantics into the whole 

training pipeline. The closest to our method is the work of Han et al. 2017 [11]. They 

utilize the BiLSTM network to model the compatibility of the outfit as a whole and 

propose to learn jointly with visual-semantic embedding for multimodal input. 

However, the BiLSTM is hard to scale in terms of training efficiency. Lai et al. 2020 

[12] ‘s work is the first to model outfit compatibility conditional on a theme. They 

introduce a category-specific mask into the triplet embedding training process and 

finally train the network with theme classification loss. For outfit generation, it’s 
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questionable how they could generate outfits matching a theme from a database in 

an efficient manner. Lin et al. 1970 [13] propose a novel approach that learns a 

category-based subspace attention network. This network takes the source image, its 

category, and a target category as input to generate a subspace embedding and then 

is trained to widen the distance between the outfit and negative samples and the 

distance between the outfit and positive samples by a margin. Overall, none of these 

works incorporate the prompt from the user as a textual description of the outfit to 

retrieve it from a database. 

 Some works utilize hashing techniques that learn data-driven binary codes. These 

techniques have become popular for enabling efficient similarity search in large-

scale multimedia retrieval tasks. The aim is to maintain the nearest neighbor relation 

of the original space in the hamming space. The basic idea is to preserve the 

similarity, i.e., to minimize the gap between the similarity computed in hash-coded 

space and the similarity in the original space. Many methods have been introduced 

by learning real-valued embedding and then taking the sign of the values to obtain 

binary codes. Due to the huge amount of fashion items, efficiency becomes an 

extremely important problem within a practical recommendation system. Learning 

to hash has been extensively studied for efficient image retrieval [14]. This network 

models outfit compatibility through pairwise interactions and employs the weighted 

hashing technique [15] [16] [17] for matching users and items. Lu, Zhi, et al. 2019 

[1] introduce the Fashion Hashing Network (FHN) which models the pairwise 

interaction relations with the hashing technique, a method comparable to [8]. During 

inference, the model is required to generate all outfit samples to compute the score 

for each, aiming to identify the outfit with the highest score. To retrieve garments 

for the hashing network based on a textual description, an additional model is 

required. However, there is a potential challenge where items generated by the 

hashing network may not accurately match the outfit description. Our research is 

focused on investigating and addressing this issue. 
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1.3. Motivation 

 Lately, there has been a rising interest in the Multimodal system, particularly in 

the field of Text-Visual generation. In this context, the AI model is tasked with 

producing visual instances that best align with a given textual description, with 

generative and retrieval methods being the most popular approaches [6] [18] [19]. 

Our approach aims to elevate the capabilities of current AI Chatbots utilized in the 

Fashion Industry. Through our efforts, the Chatbot system has evolved into an Outfit 

Stylist, proficient in sourcing not just standalone items from diverse fashion 

databases but also assembling harmonious garments into stylistic ensembles tailored 

to the preferences of end users. Our work has the potential to streamline the fashion 

shopping experience, allowing customers and enthusiasts to effortlessly procure 

their desired outfits from the convenience of their homes.  

1.4. Contribution 

 In our thesis, we develop a full pipeline for a fashion outfit retrieval system based 

on a user prompt. The primary contribution of our work is outlined as follows: 

- Create a model for recommending fashion outfits based on textual prompts. 

- Conduct experiments and demonstrations to assess the effectiveness and 

efficacy of our proposed approach. 

 Our research marks the pioneering exploration of prompt-based systems for 

retrieving multiple interactive visual instances. This work establishes a novel 

research direction within the AI-Fashion domain. 
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Chapter 2: Background 

2.1. AlexNet Architecture 

 AlexNet [20] was the first Convolutional Neural Network architecture to win the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012. The 

AlexNet architecture is shown in Figure 2.1. It consists of 5 convolution layers 

followed by 3 max-pooling layers, 2 normalization layers, 2 fully connected layers, 

and finally a softmax layer. AlexNet is recognized as one of the most impactful 

papers in the field of computer vision. It has inspired numerous subsequent 

publications that utilize Convolutional Neural Networks (CNNs) and Graphics 

Processing Units (GPUs) to expedite the progress of deep learning.  

 

Figure 2.1. The AlexNet architecture 

2.2. Transformer Architecture 

 The Transformer architecture is a type of neural network architecture introduced 

in the paper "Attention is All You Need" by Vaswani et al. (2017) [21]. It has since 

become a foundational model for a wide range of natural language processing (NLP) 

and other machine-learning tasks. 

 The key innovation of the Transformer architecture is the self-attention 

mechanism, which allows the model to weigh the importance of different words in 

a sequence when making predictions. This is in contrast to traditional recurrent 

neural networks (RNNs) and long short-term memory networks (LSTMs) that 

process input sequences sequentially. 
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 The Transformer model includes 2 phases: Encoder and Decoder. 

 

Figure 2.2. The Transformer - model architecture, from [21] 

The first part of the model is the encoder. It takes an input sequence and 

transforms it into a sequence of encoded representations. It consists of multiple 

layers, each containing a multi-head self-attention mechanism and a position-wise 

feed-forward neural network. The self-attention mechanism allows the model to 

capture dependencies between different words in the input sequence. 

The decoder takes the encoded sequence and generates an output sequence. Like 

the encoder, it consists of multiple layers with self-attention and feed-forward 

components. Additionally, it includes an additional attention mechanism called 

encoder-decoder attention, which helps the decoder focus on relevant parts of the 

encoded input. 
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The central component throughout the architecture is the Multi-Head Attention. 

The multi-head attention mechanism enhances the model's ability to capture 

different types of dependencies. It consists of multiple attention heads that operate 

in parallel, allowing the model to focus on different parts of the input sequence 

simultaneously. As the name suggests, each head utilizes the attention mechanism 

that allows the model to assign different weights to different parts of the input 

sequence when processing a particular element. It computes attention scores 

between each pair of positions in the input sequence and uses these scores to weigh 

the importance of different elements. This mechanism enables the model to capture 

long-range dependencies and improves its ability to understand context. 

 

Figure 2.3. Multi-Head Attention, picture taken from ResearchGate1 

 
1 https://www.researchgate.net/publication/334427742_Stock_Volatility_Prediction_Based_on_Self-

attention_Networks_with_Social_Information/figures?lo=1 
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2.3. Language Model 

 The advent of the transformer architecture has heralded a significant leap forward 

in the realm of natural language processing. The Generative Pre-trained Transformer 

(GPT) models, a noteworthy instantiation of this architecture [22] [23], have played 

a pivotal role in pushing the boundaries of state-of-the-art (SOTA) language models. 

The model consists of multiple layers of attention and feedforward mechanisms, 

allowing it to understand and generate complex sequences of data, such as language. 

The GPT architecture serves as the foundational framework for a contemporary class 

of deep learning models denominated Large Language Models (LLMs), which are 

widely popular these days. 

 

Figure 2.4. The GPT-2 small architecture 
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2.4. Vision Transformer  

 The Transformer architecture has been very successful in natural language 

processing, but it has not seen the same dominance in computer vision. However, in 

2021, researchers from Google Brain proposed a novel neural network that adapts 

the Transformer design for computer vision tasks. This architecture is known as the 

Vision Transformer (ViT) [24]. Unlike previous SOTA computer vision models that 

rely heavily on convolutional neural networks (CNNs), the ViT is composed purely 

of Transformer encoder blocks. When trained on large amounts of data, the ViT 

model rivals or exceeds the performance of CNN models trained on the same amount 

of data. 

 

Figure 2.5. The ViT architecture 
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2.5. Multimodal Model 

 CLIP (Contrastive Language-Image Pre-training) [6] marked a significant 

milestone as the initial model capable of applying zero- and few-shot learning to 

various image classification tasks. It constitutes a multi-modal framework, designed 

through a training process that involves the maximization of cosine similarity scores 

for pairs comprising matching images and textual descriptions. Specifically, when 

provided with 𝑁 pairs of images and texts, CLIP concurrently embeds all 𝑁 images 

and 𝑁 texts using their respective encoders. Subsequently, it computes the dot 

product of these embeddings to construct an 𝑁 × 𝑁 matrix, where each entry 

corresponds to a pair among the 𝑁 images and 𝑁 texts. Notably, the diagonal entries 

of this matrix, which represent the genuine 𝑁 pairs, are maximized, while 

conversely, the non-diagonal entries, denoting spurious pairings among 𝑁2 − 𝑁 

possibilities, are minimized. This training methodology ensures the model's 

proficiency in associating images with their relevant textual descriptions.  

 

Figure 2.6. CLIP architecture, taken from [6] 
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2.6. Fashion Hashing Network 

 In this thesis we employ the Fashion Hashing Network (FHN) architecture from 

[1] to model the interactive compatibility between fashion garments. The author 

suggests that the most successful way to model high-order relationships is to 

decompose them into pairwise relationships. This section defines the theoretical 

formulation from the original paper with some modifications suited to our problem. 

 Suppose there are 𝑁 fashion categories (e.g. top, bottom, shoes, jeweler, …). The 

number of items in the n-th category is donated by 𝐿𝑛. Let  

𝑋(𝑛) = {𝑥1
(𝑛)

, 𝑥2
(𝑛)

, … , 𝑥𝐿𝑛

(𝑛)
} (2.1) 

denotes all items in the n-th category, where 𝑥𝑖
𝑛  is the i-th item in it. Then an outfit 

with 𝑁 items, with each from one category, can be represented as 

𝑂𝑖 = {𝑥𝑖1

(1)
, 𝑥𝑖2

(2)
, … , 𝑥𝑖𝑁

(𝑁)
} (2.2) 

where 𝑖 = (𝑖𝑖 , … , 𝑖𝑁) is the index tuple. 

 Rather than incorporating user preferences in the original work, we use 𝑟𝑡,𝑂𝑖
 to 

indicate the compatibility of a textual description to outfit 𝑂𝑖. The higher the score, 

the more matching the text to the outfit. Our task is to predict 𝑟𝑡,𝑂𝑖
 for each 

description-outfit pair so that the most suitable outfits for a prompt are recommended 

to the user. 

 Due to the extremely large number of outfit pairs, the binary embedding 

technique is used. The binary codes are obtained by taking the signs of the 

continuous variables, i.e. 

𝑏𝑖𝑛

𝑛 = 𝑠𝑖𝑔𝑛(ℎ𝑖𝑛

𝑛 ); 𝑏𝑡
𝑡 = 𝑠𝑖𝑔𝑛(ℎ𝑡

𝑡) (2.3) 

where the function 𝑠𝑖𝑔𝑛(𝑥) equals 1 when 𝑥 is greater than or equal to 0 and equals 

−1 in other cases. 
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 The model was built based on pairwise interaction relations for the efficiency of 

computing the preference scores and retrieving compatible outfits for 

recommendation. 

 Let 𝑏𝑖 , 𝑏𝑗 ∈ {−1, +1}𝐷 be the binary codes of two fashion objects, their 

compatibility is measured by: 

𝑚𝑖𝑗 = 𝑏𝑖
𝑇𝛬𝑏𝑗 (2.4) 

where 𝛬 is a weighting matrix that is constrained to be diagonal. 

 The score for outfit 𝑂𝑖 concerning prompt 𝑡 is computed by: 

𝑟𝑡,𝑂𝑖
= 𝛼 ∙ 𝑟𝑡,𝑂𝑖

(𝑡)
+ 𝑟𝑂𝑖

(𝑖)
 (2.5) 

where: 

𝑟𝑡,𝑂𝑖

(𝑡)
=

1

𝑧
∑ 𝑏𝑖𝑛

(𝑛)𝑇
𝛬(𝑡)𝑏𝑡

(𝑡)

𝑛

 (2.6) 

𝑟𝑂𝑖

(𝑖)
=

1

𝑧
∑ ∑ 𝑏𝑖𝑛

(𝑛)𝑇
𝛬(𝑖)𝑏𝑖𝑚

(𝑚)

𝑚𝑛

 (2.7) 

with 𝛬(𝑡) and 𝛬(𝑖) are the weighting matrices for prompt-item and item-item pairs 

respectively; 𝑏𝑡
(𝑡)

 is the embedding of the textual description for the whole outfit. 

The scalar 𝛼 is used to balance the contributions of the two terms. 

 Fashion items are usually depicted by some textual description, so the hashing 

model also tries to extract some features from them in our model. 

 Suppose binary codes from different modalities are donated by 𝑏𝑣,𝑖𝑛

(𝑛)
, 𝑏𝑣,𝑖𝑛

(𝑛)
, where 

𝑣 and 𝑓 indicate visual and textual respectively. 

 The overall score with multi-modality information can be computed by: 
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𝑟𝑡,𝑂𝑖
({𝑏𝑣,𝑖𝑛

(𝑛)
} , 𝑏𝑡

(𝑡)
) + 𝑟𝑡,𝑂𝑖

({𝑏𝑓,𝑖𝑛

(𝑛)
} , 𝑏𝑡

(𝑡)
) (2.8) 

 The training set contains a set of outfit pairs: 

𝒫 ≡ {(𝑡, 𝑖, 𝑗)|𝑟𝑡,𝑂𝑖
> 𝑟𝑡,𝑂𝑗

} (2.9) 

where 𝑟𝑡,𝑂𝑖
 and 𝑟𝑡,𝑂𝑗

 are the score of a positive and negative outfit corresponding to 

a textual description respectively. A positive outfit means that the outfit matches the 

description while the reverse is true for a negative one. 

 Using the BPR [25] optimization criterion, the objective function is: 

ℒℬ𝒫ℛ = ∑ 𝑙𝑜𝑔 (1 + 𝑒𝑥𝑝 (− (𝑟𝑡,𝑂𝑖
− 𝑟𝑡,𝑂𝑗

)))
(𝑡,𝑖,𝑗)𝜖𝒫

 (2.10) 

 Also, the objective function adds constraints to make the embeddings of visual 

and textual information more consistent with each other by adding the following 

loss: 

ℒ𝒱𝒮ℰ = ∑ 𝑚𝑎𝑥{0, 𝑐 − 𝑠(𝑣, 𝑓) + 𝑠(𝑣, 𝑓𝑘)}

𝑣,𝑘

 

+ ∑ 𝑚𝑎𝑥{0, 𝑐 − 𝑠(𝑣, 𝑓) + 𝑠(𝑣𝑘, 𝑓)}

𝑓,𝑘

 

(2.11) 

where (𝑣, 𝑓) are binary codes for items from the two modalities. (𝑣, 𝑓) are for the 

same item. (𝑣, 𝑓𝑘) are for different items and so is (𝑣𝑘, 𝑓). The similarity is denoted 

as  𝑠(𝑣, 𝑓) = 𝑣𝑇𝑓. 

 Overall, the objective function is: 

min
𝜃

𝔼(ℒℬ𝒫ℛ + 𝜆ℒ𝒱𝒮ℰ) (2.12) 
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Chapter 3: Dataset 

3.1. Polyvore 

 The Polyvore dataset provides a large-scale corpus for research on fashion outfit 

composition. It contains over one million user-created outfits compiled from 

Polyvore, a popular fashion community website. Each outfit includes fashion items 

of different categories such as tops, bottoms, and shoes that Polyvore users put 

together. The dataset includes rich item metadata such as product images, 

descriptions, brands, categories, and user engagement statistics. Since its release, the 

Polyvore dataset has facilitated research on outfit compatibility learning and fashion 

recommendation systems. However, the dataset also presents challenges for 

evaluation due to its inherent biases, such as imbalance among categories and 

brands. Still, the size and diversity of the Polyvore dataset make it a valuable 

resource for data-driven fashion intelligence research. 

 We use a subset of the Polyvore dataset, which contains about 261k images of 

items with their metadata. We only use the images and the category of items in this 

dataset. 

 

Figure 3.1. Some examples of items in the Polyvore dataset 

 

Figure 3.2. Metadata of the Polyvore dataset 
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Figure 3.3. Metadata of the Polyvore dataset we will use 

 

Figure 3.4. Distribution of categories in the Polyvore dataset 

 These images are combined into outfits which are classified into 2 outfit datasets: 

disjoint and nondisjoint. Disjoint dataset contains mutually exclusive categories, 

ensuring that each item belongs to only one class, simplifying the training and 

evaluation processes for machine learning models. On the other hand, a nondisjoint 

dataset permits instances to belong to multiple categories simultaneously, reflecting 

the real-world ambiguity in fashion categorization. In this thesis, we only focus on 

the disjoint dataset, containing about 62k sets of outfits. 

 

Figure 3.5. Sample outfit items in CSV format table of the disjoint dataset 
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3.2. Fashion32 

 The primary training data for our model is sourced from the Fashion32 dataset 

[12]. To the best of our knowledge, this dataset is distinctive as it provides 

comprehensive descriptions along with diverse theme tags for each outfit and 

fashion item. The 32 themes are categorized into four groups: occasion, style, fit, 

and gender. Typically, each outfit consists of 2 to 3 items, accompanied by at least 

4 images featuring a model showcasing these fashion items. The dataset has about 

14k outfits with 41k fashion garments in total. 

 

Figure 3.6. Distribution of categories in the Fashion32 dataset 

 

Figure 3.7. An outfit sample in the Fashion32 dataset 
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Figure 3.8. Sample of outfit items in preprocessed CSV format table in the Fashion32 dataset 

3.3. Preprocessing 

 In the Polyvore dataset, items are classified into eleven groups: all-body, bottom, 

top, outerwear, bag, shoe, accessory, scarf, hat, sunglass, and jewelry. They are 

combined into outfits based on the metadata and stored in Comma-separated value 

(CSV) format table files, where each row matches with an outfit along with its 

various items and the compatible attribute which determines if the outfit is well-

matched. 

 In handling the Fashion32 dataset, since the outfit descriptions and diverse tags 

are in Chinese, we employ the Google Translate API to convert these texts into 

English. Subsequently, based on certain tags for each outfit item, we classify them 

into seven groups: top, outerwear, bottom, full-body, bag, accessory, and footwear. 

The resulting outfit items are then stored in CSV files, where each row corresponds 

to an outfit along with its various items. In cases where a category is missing, it is 

marked as −1. Steps are the same with the Polyvore dataset. 

 We limit our experimentation to five categories - top, outerwear, bottom, bag, 

and footwear - since these represent the most utilized categories in outfit 

composition.  
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Chapter 4: Methodology 

4.1. Negative outfits generation 

 During the training phase, each outfit is divided into two instances: one paired 

with the detailed description and the other with the concatenation of the remaining 

4 theme tags. The outfits from the dataset are labeled as positive. For each positive 

outfit, we randomly select items from the dataset to construct an incompatible outfit, 

labeled as a negative outfit, ensuring it does not match the unique description of the 

positive outfit. In the baseline method, the textual description is not incorporated 

into the training pipeline. We randomly choose fashion garments dissimilar to the 

positive outfit to compose a negative one. 

4.2. Items retrieval 

 

Figure 4.1. FashionCLIP pipeline 

 We utilize the FashionCLIP [7] model to retrieve items before composing an 

outfit. Figure 4.1 illustrates the architectural framework of the model. Like the CLIP 

model in [6], the FashionCLIP model can be delineated into two distinct phases. In 

the initial phase, the image encoder undertakes the task of mapping all the garment 

images contained within the database into a vector space characterized by a 

dimensionality of 512. Subsequently, these resulting vectors are persistently stored 

within the database. In the second phase, when a user submits a query, the text 
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encoder proceeds to project the query into a vector sharing the same dimensional 

characteristics as the image embedding vector. The prompt embedding vector is then 

subjected to a dot product operation with all the image embedding vectors, thereby 

facilitating the identification of the most compatible garment. The FashionCLIP 

model uses Transformers [21] with the architecture modifications described in [23] 

as the text encoder. The image encoder is a variant of the Vision Transformer (ViT) 

model [24]. The process can be summarized by pseudocode in Figure 4.2. Finally, 

the accompanying outfit description is projected into an embedding vector with 

dimension 512 through the text encoder of the model for the second phase. The 

sample demonstration of the item retrieval from a user prompt using this model can 

be visualized in Figure 4.3. 

 

Figure 4.2. Python-like pseudocode for the multi-modal retrieval of the CLIP model 

 

Figure 4.3. Retrieve items satisfying a user prompt using the FashionCLIP model 
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4.3. Outfit composing 

 The architecture of the hashing fashion model is illustrated in Figure 4.4, 

comprising three key components: a feature network for feature extraction, multiple 

type-dependent hashing modules that learn binary codes, and a matching block for 

predicting preference scores. For simplicity, we experimented with only one shared 

visual encoder for five categories. The textual embedding of outfits is directed 

through a Textual Encoder block, which is a stack of fully connected layers, then 

through a hashing layer similar to the visual one, contributing to the matching block 

and influencing the final score calculation. 

 To extract image features, we employ AlexNet as the feature network. 

Optionally, textual information can also be integrated. Distinct categories are treated 

as different types, and the hashing modules involve fully connected layers 

employing a sign function for binarization. The matching block computes the final 

score, encompassing two terms: one assessing interactive compatibility among items 

and the other considering textual semantic compatibility within the outfit. 

 

Figure 4.4. Fashion hashing network (FHN) Architecture 

4.4. Overall framework 

 Our pipeline operates in the following manner: when presented with a textual 

prompt from a user, we utilize the FashionCLIP model to retrieve the top fashion 
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products corresponding to the given prompt for each of the five categories. These 

retrieved images form a compact database, and hence the hashing network model 

employs a recursive technique for swift outfit composition using these items. Upon 

presenting these outfit queries, the matching block is responsible for computing the 

scores of each outfit, enabling the presentation of the top-scoring outfits to the user. 

The full pipeline is displayed in Figure 4.5. 

 

Figure 4.5. A full pipeline of prompt-based outfits retrieval  
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Chapter 5: Experiments 

5.1. Evaluation metrics 

 We engage in experiments encompassing two recommendation tasks. The first 

involves outfit recommendation, wherein we rank the testing outfits in descending 

order of their compatibility scores. Evaluation of ranking performance is conducted 

using metrics such as Area Under the ROC curve (AUC) and Normalized 

Discounted Cumulative Gain (NDCG). The second task focuses on fill-in-the-blank 

(FITB) fashion recommendation experiments. The objective is to select an item from 

a set of candidate items (four in our experiments) that is not only highly compatible 

with the remaining items of the outfit but also aligns with the provided description. 

5.1.1. AUC  

 To understand the AUC score, we need to define the Receive Operator 

Characteristic (ROC) curve. From a confusion matrix of a binary classifier, some 

important metrics are derived: 

 The True Positive Rate (TPR), also known as sensitivity or recall, measures the 

proportion of actual positive instances correctly identified by the model: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5.1) 

 The False Positive Rate (FPR) represents the proportion of actual negative 

instances incorrectly classified as positive: 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (5.2) 

 The Receiver Operating Characteristic (ROC) curve is a graphical representation 

of the relationship between the True Positive Rate (TPR) and the False Positive Rate 

(FPR) across a range of threshold values. The Area Under the Curve (AUC), 

denoting the area beneath the ROC curve, functions as a quantitative metric to assess 

the model's overall discriminative capacity between classes. A model with a higher 
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AUC score is considered more effective at distinguishing between positive and 

negative instances. A perfect classifier would have an AUC score of 1.0, while a 

random classifier would yield an AUC score of 0.5. 

 

Figure 5.1. The ROC-AUC curve, from GeeksforGeeks2 

5.1.2. NDCG  

 NDCG, short for Normalized Discounted Cumulative Gain, is a popular measure 

for ranking quality and is used to evaluate the performance of search engines, 

recommendations, or other information retrieval systems. Following the definition 

in [8], letting 𝜋𝑖  be the evaluated order of the rank, the formula for the NDCG at the 

m-th position is: 

𝑁𝐷𝐶𝐺@𝑚 = (𝑁𝑚)−1 ∑
2

𝑦
𝜋′(𝑖) − 1

log2(max (2, 𝑖))

𝑚

𝑖=1

 (5.3) 

where 𝑁𝑚  is the score of an ideal ordering, 𝑦𝜋′(𝑖) is 1 for positive outfits and 0 for 

neutral ones. Mean NDCG is the mean of 𝑁𝐷𝐶𝐺@𝑚 for 𝑚 = 1,2, … , 𝑀 with 𝑀 

being the length of the ordering. We will report the average mean NDCG for all 

outfits and refer to it as NDCG for short in the benchmark section. 

5.1.3. FITB 

 The Fill-in-the-Blank (FITB) task is delineated as follows: when presented with 

a subset of items constituting an outfit and a set of candidate items (comprising four 

 
2 https://www.geeksforgeeks.org/auc-roc-curve/ 
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items, with one positive item and three negative items), the objective is to identify 

the most congruent candidate. To streamline the evaluation process, a repetition of 

the task is undertaken four times for a given outfit, wherein one item among three 

candidates is randomly substituted with an item drawn randomly from the dataset. 

All four candidates are grouped into a batch, wherein the positive item consistently 

constitutes the initial outfit in each batch. The performance assessment is conducted 

based on overall accuracy. 

 

Figure 5.2. Visualization of the FITB task, from Vo et al. 20233 

5.2. Benchmark  

 To the best of our knowledge, this is the first work to study outfit retrieval 

matching a user prompt. The methods that can be compared are very limited. 

 For this problem, we only experimented with the fashion hashing network in two 

different training methods: one trained exclusively for outfit item compatibility, 

serving as a baseline for comparison, and the other trained for both outfit item and 

textual description compatibility. Additionally, we conducted a comparative 

analysis with a model trained solely from outfit item images within the Polyvore 

dataset. We call these models FHN-T3 to resemble the original paper [1]. 

Specifically, we compared 3 models, all of which are trained for 100 epochs: 

 
3 Vo, A.H., Le, T.B.T., Pham, H.V. et al. An efficient framework for outfit compatibility prediction towards 

occasion. Neural Comput & Applic 35, 14213–14226 (2023). https://doi.org/10.1007/s00521-023-08431-1 
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- FHN-T3 (Visual - Polyvore): the baseline method, the FHN model is trained 

on item images of the Polyvore dataset. 

- FHN-T3 (Visual): the FHN model is trained on item images of the Fashion32 

dataset. 

- FHN-T3 (Visual + Outfit semantic): the FHN model is trained on item images 

of the Fashion32 dataset and outfit textual description embedding 

accompanying each outfit. 

 The corresponding results are shown in Table 5.1 below. 

Table 5.1. Comparison of different training methods on the Fashion32 dataset 

Method Accuracy AUC NDCG FITB 

FHN-T3 (Visual - 

Polyvore)  
0.6232 0.6115 0.7153 0.3520 

FHN-T3 (Visual) 0.8191 0.8150 0.8518 0.5442 

FHN-T3 (Visual + 

Outfit semantic) 
0.8706 0.7416 0.7982 0.5071 

 We carried out experiments involving the initial training of the model on the 

Polyvore dataset, followed by fine-tuning on the Fashion32 dataset using a pre-

trained model. Unfortunately, this approach did not produce the intended results. We 

explored the inclusion of outfit description embedding in the training process, but 

the results did not surpass those of the top-performing model. This outcome may be 

attributed to the possibility that outfit semantics introduced noise rather than 

enhancing the model's performance. The most successful model, as depicted in 

Table 5.1, resulted from exclusive training on the Fashion32 dataset without 

incorporating outfit textual semantics. 
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 Figure 5.3 illustrates the performance of our top model concerning various 

positive and negative outfit pairings. The negative outfit components are randomly 

selected from the training dataset, making it simpler for the model to assign elevated 

scores to positive items already present in the training data. In Figure 5.4, the 

challenge intensifies as the distinction between positive and other negative outfit 

candidates boils down to just a single item. The model encounters challenges in 

distinguishing positive outfits from negative ones, particularly when the outfit 

contains a substantial number of items. 

 

Figure 5.3. Sample of positive and negative outfit pairs, accompanied by corresponding scores, 

aligned with the positive outfits' descriptions. Positive outfit scores are emphasized in green, 

whereas negative outfit scores are highlighted in red 
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Figure 5.4. Sample of candidate outfits from the dataset, evaluating for FITB task.  Positive 

outfit scores consistently appear in the first row across the four candidates. The highest scores 

are depicted in green, whereas the others are marked in red. Missing items are indicated by a 

yellow-line square 

5.3. Demonstration 

 Our model pipeline is deployed using the FastAPI library, and the model 

implementation is showcased within a web application utilizing the Streamlit library. 

The model retrieves images from a PostgreSQL database comprising approximately 

500 randomly selected images sourced from the Polyvore dataset. We assess the 

model's performance on a modest computing platform equipped with an NVIDIA 

GeForce GTX 1050Ti GPU and 8GB of RAM. 
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Figure 5.5. Application showcasing retrieval demonstrations for some specific prompts 

 Figure 5.5 illustrates some prototypical examples of query-based retrieval 

scenarios, in which a user inputs a query into the search interface, thereby triggering 

the system to retrieve ensembles from the database that are compatible with the 

provided query. Each row of the output exhibits an ensemble comprising five items 

from five distinct garment categories listed above.  
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Chapter 6: Discussion 

 Despite the new approach in our model, certain limitations persist. One notable 

drawback lies in handling a variable number of outfit items, introducing a challenge 

for consistent modeling. Additionally, the scoring mechanism relies on the sum of 

pairwise relationships between items, lacking scalability across various item 

categories. It is because as an increasing number of item categories are trained and 

retrieved, the larger score pair tends to average out the smaller ones. A potential 

improvement could involve adopting a weighted score sum between pairs of items. 

However, the variable number of outfit items, resulting in a variable number of item 

pairs, complicates this approach, necessitating further investigation and resolution. 

Consequently, more work must be done to investigate and resolve this issue. 

Additionally, there has not been a proper metric for prompt-base outfit retrieval, so 

a new metric should be designed dedicated to this problem. Additionally, the absence 

of a proper metric for prompt-based outfit retrieval highlights the need for a 

dedicated metric tailored to this problem. Overcoming these challenges holds the 

potential to enhance the model's robustness, broaden its applicability, and invite 

further research studies into this space. 
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Chapter 7: Conclusion and Future Works 

 In summary, our thesis focuses on the application of the FashionCLIP model for 

image retrieval based on user prompts and the efficient implementation of a fashion 

outfit recommendation system through the utilization of a fashion hashing network. 

We experimented with the integration of textual descriptions into both the training 

and inference framework. Finally, we showed how to combine the two models, 

creating an efficient pipeline. While there are various approaches to represent outfit 

compatibility, our method proves to be the most practical for efficient outfit retrieval 

in both the training and inference phases. Through extensive experiments on the 

Polyvore and Fashion32 datasets, our approach demonstrates strong performance 

across a diverse array of prompts, considering factors such as gender, occasion, and 

style. While the system performs well in practical scenarios, there is room for future 

enhancements, particularly in terms of inference speed, aesthetic capabilities, and 

potential expansions into areas such as room design. 
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Figure A.1. Validation curve of some metrics while training our model 


