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ABSTRACT 

 

Recently, the research on Medical Visual Question Answering (Med-VQA) [1] is 

becoming significantly popular. Med-VQA intends to answer the question, given an image 

with vital clinic-relevant information, helps physicians in diagnosing diseases, giving 

patients better insights about illness. Med-VQA performs worse than general domain 

VQA due to a lack of accurate data such as the typical image as X-ray image. And another 

reason is proposed models are complicated in both image encoder and text encoder, which 

does not completely have outstanding performance. In order to deal with Med-VQA data 

limitation, recents studies primarily refine the fusion module which is responsible for 

synthesizing the question features and image features and provide models pre-trained by 

self-collection new dataset, overlooking the effect of question and image history.  

In this thesis, we introduce a visio-linguistic model, the architecture employing an 

Associative Memory Module in the shape of separate storage of visual-linguistic 

individual experiences and their relationship to enhance context. Additionally, we 

introduce a Prototype Learning block to carry out stratified prototype learning on textual, 

visual embeddings utilizing morden Hopfield layers. Our model endeavors to acquire the 

most significant prototypes from the embeddings of texts and images with the 

augmentation of memory from associate memory modules. This is in contrast to directly 

acquiring concrete representations of joint features for different meanings in text and 

image. Then, by using these learned prototypes, more complex semantics can be 

represented for the answer. On VQA-RAD datasets, the proposed method accomplishes 

state-of-the-art performance with notable accuracy improvements of 0.45 %. 

 

Keywords: Visio-linguistic, Computer Vision, Natural Language Processing, 

Prototype Learning, Visual Question Answering. 
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1. Introduction 

1.1. About Medical Visual Question Answering 

Visual Question Answering (VQA) involves the integration of Computer Vision 

(CV) and Natural Language Processing (NLP) [1]. The purpose of the VQA system is to 

provide answers to questions related to a given image by analyzing its content. The recent 

investigation into medical Visual Question Answering (VQA) has exploded widely. 

  Medical Visual Question Answering (Med-VQA) is a task in machine learning 

wherein a medical image is presented alongside an associated query, and the objective is 

to furnish a precise response to said query. It is a harmonious fusion of the fascinating 

fields of CV, the art of visual data-understanding, the alluring world of NLP, the complex 

web of human language understanding, and the profound knowledge and expertise of the 

medical world. A Med-VQA integrated can potentially respond to doctor's requests, 

reduce the pressure on the healthcare system and increase the effectiveness of medical 

staff (Example Figure 1.1). Another application that parallels the benefits of Med-VQA is 

to be executed as a clinician or a researcher who examines body tissue and provides help 

to other healthcare systems to make a diagnosis [2]. The VQA medical system can act as 

a knowledgeable assistant alongside the responsibilities of medical professionals. The 

utilization of a VQA system as a secondary diagnostic tool presents the potential to 

mitigate the risk of misdiagnoses by offering an additional perspective that corroborates 

the physician's interpretation of medical images [3]. 

 

Figure 1.1: Med-VQA examples images, questions, and answers. 

In the end, a sophisticated and comprehensive Med-VQA system can immediately 

evaluate patient images and provide a variety of answers. When a healthcare expert is not 

available, a Med-VQA system can grant comparable guidance in certain circumstances, 
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such as fully automated health checks. After visiting the hospital, patients search online 

for more information. Misleading information and misleading data can produce 

inappropriate results. To provide trustworthy answers anywhere, anytime, a Med-VQA 

can also be applied into an online examination platform. 

Medical VQA has higher technical requirements than general area VQA for the 

following reasons. First, the high demand for expertise makes expert annotations 

expensive, and Question-Answer (QA) pairs cannot be artificially created from images, 

making it difficult to create a standard, large-scale Med-VQA dataset. In addition, 

answering queries around medical image’s information requires a specific VQA model 

design. A lesion is microscopic, so the question also needs to be focused, comprehended 

on a fine-grained scale. Therefore, segmentation approaches may be asked to accurately 

identify the area of interest. Finally, a question could be extremely typical and require the 

model to be trained on a completely medical knowledge. 

1.2. Background and challenges in the study 

Recent advancements in Artificial Intelligence have unlocked novel avenues for 

clinical decision support. Notably, solutions focused on the automated interpretation of 

medical images have garnered significant attention because of capability applications in 

both image retrieval and aided analysis. Further, the Med-VQA system can comprehend 

medical images and answering questions related to their meaning hold promise for 

bolstering clinical training, decision-making, and patient-about learning. From a 

computational standpoint, this Med-VQA task presents a compelling challenge that 

necessitates the seamless integration of NLP and CV techniques. These approaches have 

demonstrated significant effectiveness in this particular specialty area [2]. Text-based 

queries and images that provide precise answers through the use of medical visual content 

have gained importance in recent developments. Models such as PMC-VQA [4] and 

MUMC [5] as shown in Figure 1.2 are prime examples of these models that exhibit 

remarkable performance and achieve innovative results rather than state-of-the-art results 

at the moment. 

Medical Visual Question Answering (VQA) constitutes a distinct field within VQA, 

focusing on generating responses to inquiries posed in natural language regarding medical 

images. Although Med-VQA promises exciting advancements in healthcare, its 

application faces several challenges. The challenge of question diversity, interpretability, 

complementary medical data, large language models, generalizability, and integration into 

the medical pipeline represent six key obstacles that arise from the general medical 

requirements for developing robust and effective applications [2]. However, a prominent 

obstacle in medical VQA lies in the scarcity of large-scale labeled training data, which 

typically involves substantial costs for collection and construction. Thus, medical 

multimodal data diversity poses a challenge for VQA models to achieve Out-of-

Distribution (OOD) generalization. Recent studies have indicated a risk of OOD 
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generalization in medical VQA, as shown in Figure 1.3, the models may answer based on 

questions and omit input images and due to correlations between the question and answer 

distribution. 

 

Figure 1.2: The graph of some approaches results on the VQA-RAD benchmark [6] 

 

 

  Figure 1.3:   In the VQA-RAD dataset, the disparity in the allocation of responses in relation to 

a question prefix varies between the training and testing phases. This can be attributed to the 

flawed methodology in selecting models using the OOD test set. 
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1.3. Our study objectives 

The research object of the thesis “Visual Question Answering for Medical Data 

Using a Visio-Linguistic Model” is to explore algorithms to increase the efficiency of 

applying Med-VQA in reality and identify limitations of existing methods and solutions 

to improve approaches using multiple technical resolutions. 

We conduct an in-depth study of object-based memory models using recurrent 

neural networks (RNNs) to achieve the main research goal (Hopfield, 1982) [7], 

independent of current methods. This research aims to recognize the inherent conditions 

of existing approaches and describe critical problems needing to be surpassed in the 

current state. Based on these experiments with previous methods, our proposed architect 

model will take advantage of various resolution and diverse scale methods to overcome 

the mentioned limitations, giving better performance-predicted output, while ensuring 

speed and resources in deployment. 

The focus of the research goals is the development and creation of a novel 

architectural model. This architecture is intended to provide an advantage: the model can 

store the features and structures in its relational and element stores and use the rules it 

learned during training to reason across the two stores. Our architect aims to overcome 

the limitations of current methods by utilizing various techniques simultaneously, 

particularly in question open-up and answer in Med-VQA. Moreover, this architecture is 

optimized for computational efficiency, guaranteeing swift and resource-utilizing 

deployment in its operation. 

With the model's conception, the study purpose is evaluating the ability of our 

model on other datasets. 

1.4. Our study contributions 

Our present three contributions from this study: 

1. Presents the Associative Memory Module (AMM) approach to Med-VQA. The 

model was created as a two-storage model with relational storage and separate 

element storage. Because the two memories are separate, they must interact to 

enhance each other's representation. And use Hopfield layers to perform prototype 

learning from enriched visual-linguistic features to archives generalization. 

2. As far as we can tell, our model represents the initial effort that uses Hopfield 

layers, further facilitating research on memorizing and reasoning in Med-VQA. 

3. We achieved the new SOTA result for the VQA-RAD. 

Our research introduces a promising model in VQA-RAD benchmark and other 

benchmarks in Med-VQA. 
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1.5. Thesis Structure 

The thesis introduces an approach conducted experimentally that performs well 

compared to existing approaches.  

Chapter 2, entitled "Theoretical Basis," is a section generalizing research in 

medical VQA tasks. This section shows the literature review of the research problem. This 

section also provides scientific evidence about what we are based on.  

Chapter 3, entitled "Methodology," is a major section that represents most of our 

works. This chapter shows from the very beginning baseline model to the final model 

architecture after experiments. This chapter particularly describes the reason how the 

memory and prototype strategy can be applied to increase the accuracy of the Med-VQA 

task.   

Chapter 4, entitled "Results and discussion," presents our competitive results and 

experiences we earned through the study. In this chapter, we will show our experiment for 

training, evaluation, and fine-tuning the model hyper-parameters. Besides, we compare 

each impact of the module to performance and resources of the model.  

Chapter 5, entitled "Conclusion" is the final section summarizing our works, also 

characterizing our next steps with this study. Overall, as a journey, our study gets excellent 

performance despite lack of quantity in data, which leads to failure of generalizing dataset. 

2. Theoretical Basis 

In this section, we will show groundwork around several recent years to 

comprehend deeper the trend of research. Then, we will present the details of the 

foundation theories being applied in our approach. 

2.1. Related work 

2.1.1. History of Med-VQA methods 

The comprehensive framework consists of three or four key components, 

contingent upon specific task requirements: A language encoder, a visual encoder, a fusion 

algorithm, and an answering unit. The visual encoder and language encoder have crucial 

roles in extracting visual features and contextual information from text, respectively. The 

fusion algorithm, in some instances, may be integrated into the final layers of language 

encoder [9, 10, 11], operating on the same principles. The answering component is 

realized as either a text classifier layer, employing a Softmax layer, or a text generator. 

The visual encoder encompasses versatile convolutional neural network (CNN) 

architectures, including but not limited to VGGNet [12], ResNet [13], InceptionNet, 

DenseNet, and EfficientNet [14], or Transformer-based backbones. Concurrently, the 

language encoder mirrors equivalent language models, such as Transformer [15] or any  
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Figure 2.1: An illustration of the architecture of the CNN [12] 

variation of BERT [16]. Pre-trained weights typically initialize these visual and language 

encoding models during the training stage of the Med-VQA task. 

a. Visual encoder 

Concerning the visual encoder in prevalent challenges, VGGNet [12], ResNet [13] 

in Figure 2.1, and the later Transformer-based Vision Transformer (ViT) are widely 

utilized. However, in mainstream applications, researchers often employ pre-trained 

models from ImageNet [17] on VGGNet and ResNet. While ImageNet pre-trained weights 

may not be directly applicable, they present a promising alternative in scenarios where 

medical datasets have limited image data.  

The exploration of improved pre-trained models is a prominent focus for Med-

VQA research and the broader medical AI community, rather than proposing entirely 

novel methodologies. Several emerging publicly available pre-trained weights on official 

medical datasets [9] have been introduced. Given the limited number of images in most 

medical VQA datasets (e.g., VQA-RAD [18] with 315 images, SLAKE-English [19] with 

642 images, and OVQA [20] with 2001 images), strategies have been devised to address 

this constraint. These approaches involve utilizing pre-trained models on additional data, 

pre-training on more comprehensive datasets, and implementing contrastive learning. For 

instance, Xiaoman Zhang et al. employed a pre-trained model visual encoder from the 

PMC-VQA dataset [9]. Concurrently, researchers explore potential enhancements within 

the original dataset. 

b. Language encoder 

The language encoders mostly include LSTM [22], Bi-LSTM [23], GRU [24], 

BERT [16] and BioBERT [25]. Respectively, BERT methods gave higher results than 

others. Another research marks words to enhance the correlation between words in the 

same context [26]. However, NLP research has received less attention. Researchers 

develop more pre-training results on larger corpus and other typical textual documents 

like GPT-like LLMs or train a part of transformer BERT as Figure 2.2 for a variety of 

reasons. 
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Figure 2.2: The Transformer - model architecture [15] 

c. Fusion algorithm 

The fusion algorithm merges the outputs from visual encoder and language encoder 

into hidden vectors representing both aspects. While it can be integrated into the language 

encoder, its effective implementation is essential for optimal results. Two primary fusion 

algorithms are employed: the attention mechanism and the pooling module. 

The pooling module stands out as a significant technique for combining visual and 

language features. Common applications involve concatenation, summation, and element-

wise product [27]. However, concatenation yields average performance [28], and the 

element-wise product may become computationally expensive when input vectors are 

large in any dimension [29]. 

d. Answer components 

There are two choices for conducting output: classification mode and text 

generation mode. The classification mode has advantages on small, short answers. In 

contrast, text generation mode can give more accurate long answers. Anyway, It will be 

more difficult as the answers get longer and more complex in context, description. 
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2.1.2. Prior studies inspired our research 

a. Prototype learning 

Prototype learning is a method that is frequently applied in pattern recognition and 

computer vision applications with the goal of choosing or optimizing the most 

representative data points or anchors from the training set [30]. The K-Nearest Neighbors 

KNN technique is known as a popular Prototype learning approach [31], in which 

prototypes are selected by selecting the neighbors with the closest Euclidean distance from 

all training samples. The Learning Vector Quantization (LVQ) method is recommended 

[32] as manually picking prototypes from the entire training set and requires substantial 

memory. Prototype learning was improved in the classifier by considering the class 

boundaries of challenging categories with LVQ, allowing for classification of testing 

samples with a limited number of prototypes without examining whole training examples. 

As the era of deep learning approaches, research has shifted towards utilizing well-

designed neural networks for autonomous prototype learning [33]. In [34], Yang et al. 

present an image recognition approach with convolutional prototype learning, 

simultaneously optimizing prototypes across various categories and a convolutional 

neural network (CNN). They find that incorporating prototype matching in decision-

making enhances classification resilience. Dong et al. integrate the prototype learning 

technique semantic segmentation task by employing a sub-network to derive prototypes 

from the supporting set [35]. This technique shows success in applications such as action 

recognition [36] and face recognition [37]. 

In contrast to these methods, our study proposes prototype learning with morden 

Hopfield network [38] from text-image embeddings and enriched vision-language 

context. This approach simplifies the process by initially learning the most representative 

prototypes, aiding in the representation of more intricate semantics. Directly acquiring 

incredibly varied representations of combined text-image features for multiple semantics 

poses a notable challenge. 

b. Memory Network 

Memory networks have grown in popularity in language processing ever since 

Weston et al. [39] introduced a memory component to store simple event for the question 

answering problem. In general, input, scoring, attention, and response components make 

up memory networks. Unlike previous networks [39], Sukhbaatar et al. train memory 

networks in [40], eliminating the need to label supporting facts during the training phase. 

Building memory networks using neural sequence models with attention, Kumar et al. do 

so in [41]. A neuronal attention mechanism enables memory networks to focus on 

particular inputs when asked a question. This helps with many different computer vision 

and language processing issues, including machine translation [42, 43], picture 

classification [44], and image captioning [45]. The latest progress in neural architectures 
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that integrate memory or attention mechanisms includes developments such as neural 

stack-augmented RNNs [47], Turing machines [46] and hierarchical memory networks. 

[19]. In the term of Med-VQA, Pellegrini et al. [48] introduced a hierarchical arrangement 

of annotations through structured reports for X-Ray images. They subsequently 

incorporated context by referencing previously posed questions and their corresponding 

answers to predict responses. Recognizing the significant capabilities of memory 

networks in VQA [49, 50], we suggest employing an associative memory network to 

enhance the integration of vision-language context. For implementation, we use Modern 

Hopfield Network [38] to control learning and retrieval from memory. Our memory 

module thus notably differs from the existing approach. 

2.2. Base theories 

2.2.1. Attention mechanism 

Self-attention, or intra-attention, serves as an attention mechanism that connects 

between different spots within a sequence to generate a representation of the entire 

sequence. It has demonstrated success across various tasks. For example: reading, 

summarizing, enriching [51, 52]. 

However, the Transformer built entirely on self-attention, released in 2017 [15]. 

The Transformer exhibited remarkable performance on machine translation tasks and 

English constituency parsing. Notably, this architecture stands out for its absence of 

recurrence or convolution. 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉)  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄 𝐾𝑇

√𝑑𝑘
) 𝑉  (1) 

 

2.2.2. EfficientNet architecture 

EfficientNet constitutes a convolutional neural network as shown in Figure 2.3 

founded on the principle of "compound scaling," aiming to address the enduring trade-

off among model size (width, depth, resolution), accuracy, and computational efficiency. 

The core concept of compound scaling involves simultaneously scaling three crucial 

dimensions of a neural network: width, depth, and resolution. 

Compound scaling 

The procedure commences with a foundational model, acting as the initial 

reference point. Typically, this baseline model constitutes a neural network of moderate 

size that demonstrates proficiency in a given task but may lack optimization for 

computational efficiency. 
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Figure 2.3: Architecture of EfficientNet-B0 with MBConv as Basic building blocks [13] 

 

Figure 2.4: width, depth, resolution, compound scaling [14] 

Subsequently, a compound coefficient is introduced as a user-defined parameter, 

determining the extent to which the neural network's dimensions should be scaled. This 

coefficient, represented by a single scalar value, uniformly adjusts the width, depth, and 

resolution of the model as Figure 2.4. By manipulating the φ value, one can regulate the 

overall complexity and resource demands of the model. 

Through the adoption of the compound scaling methodology, EfficientNet adeptly 

navigates through an extensive array of model architectures, achieving an optimal 

equilibrium between accuracy and resource utilization. This notable capability for 

efficient scaling positions EfficientNet as a transformative force in the realm of deep 

learning. It facilitates SOTA performance across diverse CV tasks while maintaining 

adaptability to a spectrum of hardware constraints. 
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2.2.3. RoBERTa architecture 

 

Figure 2.5: The RoBERTa model architecture [53] 

RoBERTa, short for A Robustly Optimized BERT Pretraining Approach, 

introduces pivotal modifications to enhance performance and robustness, resulting in 

significant advancements across various natural language processing (NLP) tasks as 

shown in Figure 2.5. Key modifications encompass: 

Increased training data: RoBERTa surpasses BERT by utilizing a significantly 

larger pre-training dataset, integrating 160GB of text data compared to BERT's 16GB. 

This expanded dataset enables RoBERTa to acquire a more comprehensive and nuanced 

comprehension of language. 

Dynamic masking strategy: Departing from BERT's static masking strategy, 

RoBERTa adopts a dynamic masking approach that alters the masking of different tokens 

at each training step. This dynamic strategy encourages the model to prioritize learning 

contextual relationships between words, enhancing performance in downstream tasks. 

Longer training schedule: RoBERTa undergoes an extensively prolonged pre-

training period compared to BERT, involving 10 times the number of training steps. This 

extended duration allows the model to refine its internal representations, leading to 

heightened accuracy. 

3. Methodology 

3.1. Data augmentation and preprocessing 

3.1.1. Data augmentation 

Data augmentation is techniques to increase, enrich datasets in size, detail by 

creating new data from existing data. It is providing more data for training, therefore, 

results improve. Some current techniques produce negative examples by picking images  
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Figure 3.1: Common image augmentations apply on image of VQA-RAD 

or questions at random [54, 55], or create new positive training samples by composing 

reasonable image-question (VQ) pairs. To create news VQ pairs, they rely on pre-defined 

rules to generate answers that are tailored for specific question types. However, these data 

augmentation methods almost always experience a significant drop in performance when 

tested on data from the same domain as the training data [56, 57] or the answer assignment 

techniques of these methods based on human annotations and lack generality [58]. 

Therefore, we use image transform in lieu of generating VQ pairs for data augmentation. 

Image augmentation by spatial transformations may be useful in many computer 

vision applications. However, Elgendi el al (2021) [59] shows that it can negatively impact 

model performance in medical images. Especially on radiology images, for instance, 

consider the question and image in Figure 3.1. The bright area on the left part of the MRI 

(in the MRI process the left side of the image is corresponding to the right side of the 

brain) image is the brain lesion. As can be seen, the bright area is moved to the wrong 

place or disappears in horizon flip, Rotation 90 degrees, random crop and random erasing. 

Additionally, horizon and vertical flip would lead to non-physiology images. Thus, image 

augmentation without a clinical consideration may cause noise in the answering question. 

There are several ways to perform image augmentation by color modification. For 

instance, An RGB image is encoded as a 3-dimensional array, where each dimension 

represents a color channel (red or green or blue) and contains intensity values for that 

color. The colors of the image are like layers on top of its structure. We can remove or 

rearrange these layers without changing the basic shape of the image. Additionally, to 

augment an image, we can modify the hue, saturation, and value components of the image  
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Figure 3.2: The overview of medical VQA data preprocessing process 

 

Figure 3.3: Illustration of tokenization 

by isolating a specific color channel (such as blue, red, or green), and converting color 

spaces into one another. However, converting a color image should be performed carefully 

in medical VQA because one of the question categories is color. 

In the context of this study, we use random rotation in range -9 to 9 degrees and 

color jitter which randomly adjust the brightness, contrast and hue of an image to augment 

the diversity of the Med-VQA dataset. Overall, the data augmentation improves 

generalizability and robustness of the model. 

3.1.2. Data preprocessing for VQA-RAD dataset 

For the purposes of training and evaluating our model, our study made use of the 

Visual Question Answering in Radiology Dataset, as introduced in Lau et al. [60]. 

However, It should be stressed that the questions in VQA-RAD can be answered with 

short answers. Consequently, the classification mode for output will have an advantage 

[2] with the dataset. In the preprocessing process, the answer will convert to a label. 
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Data preprocessing is crucial for most machine learning projects. By cleaning the 

data, we extract more information for training, leading to better results. Figure 3.2 shows 

how we prepare images and questions. In the question pre-processing process, the question 

will be apply the sequential techniques follow: (1) Converting texts into lowercase texts, 

(2) removing special characters and extra spaces, (3) Use Byte-Level Byte-Pair Encoding 

[61] pre-trained from [63] (See Fig 3.3 for more illustration of tokenization). The image 

pre-processing based on Section 3.1.1, we resize the image with size 488 x 488 x 3. Then, 

we apply data augmentation for the image. After data cleaning, the VQ pairs will be used 

to train and evaluate our medical VQA model. 

3.2. Architecture overview 

 

Figure 3.4: Overview of our model 

In this section, we present the overview of our model and the pipeline to training 

the model. Illustrated in Figure 3.4, the model in a framework of four components: Input 

encoder, associative memory, visual-linguistic features fusion and the answering module. 

The training procedure encompasses the subsequent steps: First, our model encodes the 

input question and a related image. In particular, we use the spatial layout information-

preserving outputs of the final pooling layer of EfficientNet [14] as visual features. To 

extract features, we feed it into RoBERTa [53]. The visual and linguistic features are 

concatenated then fed into an associative memory module, which consists of relational 

memory and item memory, to store and calculate relation between visual and linguistic 

features. Next, we use an encoder-decoder attention mechanism which can choose the 

greatest pertinent visual regions and linguistics from images and questions. Each linguistic 

feature and visual feature vector's weights are calculated by the encoder-decoder attention 

mechanism as visual-linguistic features. Output of AMM will concatenate to the result of 
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encoder-decoder attention to enrich visual-linguistic features. We use prototype blocks to 

conduct hierarchical prototype learning on visual-linguistic features with modern 

Hopfield layers. Finally, the output of Prototype Block will be used to classify answers.  

The remainder of this chapter we will present each component of our model in 

detail. 

3.3. Image features extraction 

 

Figure 3.5: The architecture of the EfficientNet-b5 model. 

To extract features, we make use of the pre-trained EfficientNet [14]. First, before 

feeding into CNNs we resize images to 448 × 448. Next, Outputs from EfficientNet's final 

convolution layer (The Conv, k1*1 in Figure 3.5) will be applied to a new convolution 

with Number of channels produced by the convolution embed size and pooling layers 

intended to rescale as features in the image. The primary reason is that it has an optimally 

balanced EfficientNet feature that allows it to be flexible with different hardware 

capacities and computational resources. The output of image embedding is I ∈  ℝ𝑠×𝑑, 

where s represents 𝐻𝑜𝑢𝑡 ∗ 𝑊𝑜𝑢𝑡  of scale pool layers with size is 2 and stride 1, d is embed 

size. 

3.4. Question features extraction 

In order to extract contextual information from the questions, we decided to 

initialize the question encoder with pre-trained RoBERTa (RadBERT-RoBERTa-4m) as 

shown in Figure 3.6. Initially, the Transformer model family has demonstrated its 

impressive performance although recurrent neural networks were the powerful solution in 

NLP for a long time. Transformer gives significant improvement in either accuracy or 

train costs [15]. Next and the most important, this pre-trained model was built from 4  
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Figure 3.6:  Pre-training and fine-tuning flowchart for BERT 

million radiology reports, the same as the type of images in the VQA-RAD dataset, RAD 

stands for radiology. This pre-trained model outperforms all earlier medical domain 

models such as BioBERT, Clinical-BERT and BioMed-RoBERTa [64] in terms of 

medical language understanding.  

3.5. Associative Memory Module (AMM) 

SAM-Based Two-Memory (STM) is a memory model introduced by Hung el al. 

[65] to handle the memory limitations in Nth-farthest item and textual question answering. 

To achieve significant improvements in efficiency, the network’s memory must be able to 

extract features and structural relationships in its item and relational memory units. 

Nonetheless, such only one memory module in a neural network has difficulty 

remembering relational representation. To deal with this challenge, the model was 

designed as a two memory model, which has relational memory separate item memory. 

Additionally, the two separate memories need to interact to enhance each other's 

representations (See Fig 3.7 for detail). Hung et al. [64] introduced a new operator called 

Self-attentive Associative Memory with outer product attention. In this thesis, we embrace 

this model with some modification in input to memorize the item and relation between 

image and question then enrich visual-linguistic features. 

3.5.1. Overall AMM’s architecture 

AMM dynamically updates its item memory ℳ𝑡
𝑖  using gating mechanisms at each 

timestep based on input 𝑥𝑡 (Eq. 9). The output of both the relational memory and the item 

memory is add and passed as input to the Self-Attentive Memory (SAM), the process leads 

to the generation of a novel relational representation, which is subsequently employed to 

update the state of the relational memory ℳ𝑡
𝑟  (Eq. 12-13). The relational memory transfers 

its wisdom to the item memory (Eq. 14) and contributes information to the final output 

value (Eq. 15).  



25 

 

Figure 3.7: Illustration of Associative Memory Module 

3.5.2. Self-Attentive Memory 

a. Outer product attention (OPA) 

OPA is a more advanced version of dot-product attention. Dot product attention 

(DPA) for be expressed as follows, 

𝐴° (𝑞, 𝐾, 𝑉)  = ∑ 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑞. 𝑘𝑖)𝑣𝑖
𝑛𝑘𝑣
𝑖=1     (2) 

Where 𝐴° ∈  ℝ𝑑𝑣;  𝑞, 𝑘 ∈  ℝ𝑛𝑘𝑣;  ". "  is a dot product, with single query 𝑞 and 𝑛𝑘𝑣 

pairs of key-value. 

OPA can be form as, 

𝐴⊗ (𝑞, 𝐾, 𝑉 )  = ∑ 𝐹 (𝑞 ⊙  𝑘𝑖)  ⊗  𝑣𝑖
𝑛𝑘𝑣
𝑖=1     (3) 

Where 𝐴⊗ ∈  ℝ𝑑𝑞𝑘×𝑑𝑣; 𝑞, 𝑘𝑖  ∈  ℝ𝑑𝑞𝑘 , 𝑣 ∈  ℝ𝑑𝑣, ⊗ is outer product, ⊙ is element-

wise multiplication and 𝐹 is chosen as the tanh function. 

 The key distinction between OPA and DPA lies in their functionalities. DPA 

prioritizes the retrieval of a single, relevant item based on the query and key-value pairs. 

In contrast, OPA concentrates on forming a new relational representation, capturing the 

intricate connections and relationships between multiple items. By forming a relational 

representation, OPA manages to capture every individual bit-level association that exists 

between the value and the corresponding key-scaled query. This offers two benefits: (i) a 

DPA cannot provide higher-order representational capacity and (ii) retrieve stored items 

with a contraction operation by a type of memory that can be later recalled. 
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b. Self-attentive Associative Memory (SAM) 

Given a memory 𝑀 ∈  ℝ𝑛× 𝑑and parameter weights 𝑊𝑞  ∈  ℝ𝑛𝑞× 𝑛,𝑊𝑘
 ∈

 ℝ𝑛𝑘𝑣× 𝑛, 𝑊𝑣 
∈  ℝ𝑛𝑘𝑣× 𝑛, the operator retrieves 𝑛𝑞 queries, 𝑛𝑘𝑣 keys and values from 𝑀 as 

𝑀𝑞, 𝑀𝑘and 𝑀𝑣, respectively, 

𝑀𝑞 = 𝐿𝑁(𝑊𝑞𝑀)                                 (4) 

𝑀𝑘 = 𝐿𝑁(𝑊𝑘𝑀)                                  (5) 

𝑀𝑣 = 𝐿𝑁(𝑊𝑣𝑀)                                 (6) 

LN is denoted layer normalization operation [66]. Then, SAM generates a relational 

representation 𝑆𝐴𝑀𝜃(𝑀)  ∈  ℝ𝑛𝑞× 𝑛 × 𝑛, the 𝑙-th element of the first dimension is defined 

as, 

𝑆𝐴𝑀𝜃 (𝑀) [𝑙]  = 𝐴⊗ (𝑀𝑞[𝑙], 𝑀𝑘, 𝑀𝑣 )  

                                                             = ∑ 𝐹(𝑀𝑞[𝑙]  ⊙  𝑀𝑘[𝑖])  ⊗  𝑀𝑣 [𝑖])
𝑛𝑘𝑣
𝑖=1         (7) 

 where 𝑠 = 1, ..., 𝑛𝑞. 𝑊𝑞[j], 𝑊𝑘[𝑖] and 𝑊𝑣[𝑖] is the j-th row of matrix 𝑊𝑞, the 𝑖-th row 

vector of matrix 𝑊𝑘 and 𝑊𝑣, in the order given. 

From 𝑀, model receive items to form 𝑆𝐴𝑀𝜃 (𝑀) a new set of hetero-associative 

memories using Eq. 7. Every representation we mention is the relationship between a 

specific query and its associated collection of value. And preserving the greatest possible 

retrieval for the item memory is the role of the keys. 

3.5.3. Associative Memory based on two Memory Model 

The model consists of two memory unit ℳ𝑡
𝑖  ∈  ℝ 𝑛 × 𝑛 for items and ℳ𝑡

𝑟  ∈

 ℝ 𝑛𝑞 × 𝑛 × 𝑛for relationships. At each timestep, we use the the previous state of memories 

ℳ𝑡−1
𝑖  ,ℳ𝑡−1

𝑟  and current input data 𝑥𝑡. To produce and new state of memories ℳ𝑡
𝑖,ℳ𝑡

𝑟  

and output 𝑜𝑡 . The following are descriptions of the memory stages, 

 ℳ𝑡
𝑖-Write The data from the input is distributed throughout the rows of the 

item memory as associative memory. When an input 𝑥𝑡 is received, the item memory is 

updated according, 

                    𝑋𝑡  =  𝑓1(𝑥𝑡)  ⊗  𝑓2(𝑥𝑡)                       (8) 

                   ℳ𝑡
𝑖  =  ℳ𝑡−1

𝑖  + 𝑋𝑡                               (9) 

 where 𝑓1 and 𝑓2 are fully connected neural networks that output a d-dimensional 

vector. The gating mechanisms of LSTM are utilized to enhance the performance of Eq. 

9 as, 

                           ℳ𝑡
𝑖  =  𝐹𝑡(ℳ𝑡−1

𝑖 , 𝑥𝑡)  ⊙  ℳ𝑡−1
𝑖  + 𝐼𝑡(ℳ𝑡−1

𝑖 , 𝑥𝑡)  ⊙  𝑋𝑡             (10) 
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where 𝐼𝑡 and 𝐹𝑡 are input and forget gate with detail as, 

                          𝐹𝑡(ℳ𝑡−1
𝑖 , 𝑥𝑡)  = 𝑊𝐹𝑥𝑡  +  𝑈𝐹𝑡𝑎𝑛ℎ( ℳ𝑡−1

𝑖 )  + 𝑏𝐹                      (11) 

                         𝐹𝐼(ℳ𝑡−1
𝑖 , 𝑥𝑡)  = 𝑊𝐼𝑥𝑡  +  𝑈𝐼𝑡𝑎𝑛ℎ( ℳ𝑡−1

𝑖 )  + 𝑏𝐼                     (12) 

 ℳ𝑡
𝑟-Read as relationships stored in relation memory, for rebuilding the 

previously seen items can be read to the relational memory. 

                       𝑣𝑡
𝑟 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓3(𝑥𝑡)⊤)ℳ𝑡−1

𝑟 𝑓2(𝑥𝑡)                          (13) 

where 𝑓3 is a fully connected neural network with 𝑛𝑞 dimensional outputs vector.  The 

read information from the previous state of ℳ 
𝑟  provides an additional input coming to 

the constructing relational process. 

 ℳ𝑡
𝑟-Write ℳ𝑡

𝑖-Read SAM will be used to and construct a candidate 

relational memory and read from ℳ𝑡
𝑖  as follow, 

                     ℳ𝑡
𝑟  =  ℳ𝑡−1

𝑟  + 𝛼1𝑆𝐴𝑀𝜃(ℳ𝑡
𝑖 + 𝛼2 𝑣𝑡

𝑟  ⊗  𝑓2(𝑥𝑡))             (14) 

where 𝛼1 and 𝛼2 are scaling hyper-parameters. The combination of the present item 

memory ℳ𝑡
𝑖 and the current input data 𝑥𝑡 and the relationship between the extracted item 

as an input for SAM from the previous relational memory 𝑣𝑡
𝑟. With information from the 

far-off past, 𝑣𝑡
𝑟 enhances the relational memory. 

 ℳ 
𝑟- Transfer In this stage, by using high dimensional transformation, the 

ℳ𝑡
𝑟  is transferred to the item memory is relational knowledge, 

                          ℳ𝑡
𝑖  =  ℳ𝑡

𝑖  + 𝛼3𝐺1  ◦ 𝑉𝑓 ◦ ℳ𝑡
𝑟                         (15) 

where 𝑉𝑓 is a function use to the input tensor be flattens the first two dimensions, 𝐺1 is a 

Multilayer perceptron neural network that maps ℝ(𝑛𝑘𝑣×𝑑)× 𝑑 → ℝ𝑑× 𝑑 and 𝛼3 is a 

combining hyper-parameter. With trivial 𝐺1, the transfer acts as though long-term memory 

results of the relational memory are added to the item memory. Hence, the useful in 

enhancing long-term memory is transfer ℳ 
𝑟-Transfer. Furthermore, we produce the 

relational memory to an output 𝑜𝑡 ∈ ℝ𝑛𝑜 at each timestep. We alternatively apply high 

dimensional transformations and flatten like this, 

                               𝑜𝑡  =  𝐺2  ◦ 𝑉𝑙 ◦ 𝐺3 ◦ 𝑉𝑙 ◦ ℳ𝑡
𝑟                              (16) 

where 𝑛𝑟 is a hyper-parameter, 𝑉𝑙 is a function that the input tensor flattens the last two 

dimensions. 𝐺2  and 𝐺3 are Fully Connected neural networks that map ℝ𝑛𝑞× (𝑑𝑑)→ ℝ𝑛𝑞× 𝑛𝑟 

and ℝ𝑛𝑞× 𝑛𝑟 → ℝ𝑟𝑜. As opposed to the contraction (Eq. 11), it does not easily reconstruct 

the stored memory in the distillation process. It is able to capture the bi-linear 

representations that are kept in the relational memory through high-dimensional 

transformations. Because of this, the output is helpful for relational and item learning, 

even if it is in vector form because it contains rich representation. 
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3.6. Fusion module 

Before delivering the Encoder-Decoder, we first present its fundamental 

component Encoder-Decoder attention and Prototype learning. 

3.6.1. Encoder-Decoder attention 

The Encoder-Decoder attention is a composite module that combines two basic 

attention units: Cross-Attention and Self-Attention, as illustrated in Figure 3.8. In [29], to 

improve the attending features' ability to be represented, the concept of multi-head 

attention is introduced. This involves parallelizing 'heads,' where each head represents an 

individual scaled dot-product attention function. 

𝑀𝐴(𝑄, 𝐾, 𝑉)  = [ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, . . . , ℎ𝑒𝑎𝑑ℎ]𝑊𝑜     

                  ℎ𝑒𝑎𝑑𝑖 =  𝐴(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉)     (17) 

where 𝑊𝑖
𝑄,𝑊𝑖

𝐾 ,𝑊𝑖
𝑉 ∈ ℝ𝑑 × 𝑑ℎ are the projection matrices for the i-th head, and 𝑊𝑜  ∈ 

ℝ(ℎ∗𝑑ℎ) × 𝑑  . 𝑑ℎ is the dimensionality of the output features from each head. 

 

Figure 3.8: Self-Attention (left) and Cross-Attention (Right). 

The encoder-decoder model (See in Figure 3.9) is motivated by the proposed 

Transformer model in [15]. Given image features 𝑋 and Question Features 𝑌 as input. The 

encoder-decoder attention strategy might be viewed as an encoder that learns the 

characteristics of the attended question 𝑌(𝐿) with L stacked SA units and a decoder to use 

𝑌(𝐿) to become familiar with the attended image features 𝑋(𝐿) with stacked Self-Cross-

Attention units. 
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Figure 3.9: Encoder-Decoder attention. 

 

 

Figure 3.10: Detail of Prototype Leaning Block. 

3.6.2. Prototype Learning Block 

  It is extremely difficult to directly learn genuine but highly different semantic 

representations because of the enormous modality gap that exists between inquiries and 

medical images. We apply using the visual-linguistic feature space for prototype learning 

(Figure 3.10). More specifically, we apply the Hopfield layer and the self-attention layer 

that make up the prototype learning block. Each sub-layer uses a residual connection, and 
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the Normalization and Scale layers come next. 

  Hopfield Layer. The initial proposal of the Hopfield layer, primarily designed for 

recognizing stored patterns or static queries, is found in the current Hopfield network [38]. 

Our objective is to enhance the network's capability to autonomously leverage clusters of 

high-level semantic concepts inherent in the data samples. This enhancement allows the 

network to systematically discover the most representative prototypes using the visual-

linguistic features that are input. These acquired prototypes can be considered as code 

words representing more intricate semantic concepts. The Hopfield layer employed in this 

study is depicted in Figure 3.11. Formally, let 𝑅 𝜖 ℝ(𝑠+𝑙)×𝑑 denote the input visual-

linguistic feature 𝑅. The Prototype content and matrix prototype lookup matrix are then 

defined as 𝑊𝑠𝑡𝑜𝑟𝑒 , 𝑊𝑙𝑜𝑜𝑘𝑢𝑝𝜖 ℝ𝑛𝑝𝑟𝑜𝑡×𝑑, where 𝑛𝑝𝑟𝑜𝑡 is the number of prototypes. The 

output 𝑍 𝜖 ℝ𝑠×𝑑 can be be formulated as: 

                                 𝑍 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛽𝑅𝑊𝑙𝑜𝑜𝑘𝑢𝑝
𝑇 )𝑊𝑠𝑡𝑜𝑟𝑒,                       (18) 

Where 𝛽 =  
1

√𝑑
  is a scaling scalar. 

With Eq. 18 the prototype learning can achieved by Hopfield layer the from two 

perspective : 1) Saving the stored patterns and learning the most representative prototypes 

in 𝑊𝑠𝑡𝑜𝑟𝑒, each row in 𝑊𝑠𝑡𝑜𝑟𝑒 the equate to a stored visual-linguistic prototype; and 2) 

Using the prototype learning, the learnt prototypes from lookup matrix 𝑊𝑙𝑜𝑜𝑘𝑢𝑝 with 

learning to represent the input visual-linguistic features 𝑋. Thus, the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(. ) in (*) 

can be comprehended as the probability of each class (prototype) in the mapping.  

 
Figure 3.11:  The Illustration of the Hopfield layer. 

3.6.3. Features fusion 

After the Encoder-Decoder attention stage, the output image features 𝑋(𝐿) ∈ 

ℝ𝑠×𝑑𝑒𝑚𝑏𝑒𝑑 and question features 𝑌(𝐿) ∈ ℝ𝑙×𝑑𝑒𝑚𝑏𝑒𝑑 already contain rich information 

about the attention weights over the image regions and question words. Moreover, with 

the memory features 𝑀 ∈  ℝ1×𝑑𝑒𝑚𝑏𝑒𝑑 representing relationships between arbitrary stored 

items from AMM. We concatenate all of them into 𝑀 ∈  ℝ(𝑠+𝑙+1)×𝑑𝑒𝑚𝑏𝑒𝑑, then feed to 

the N prototype learning block to learn the prototype of each class  𝑍 ∈  ℝ(𝑠+𝑙+1)×𝑑𝑒𝑚𝑏𝑒𝑑. 
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3.7. Answer components and loss function 

The answer will be classified with output of visual-linguistic features fusion 𝑍. 

First, the fused features 𝑍 is projected to vector 𝑧 ∈  ℝ1×𝑑𝑒𝑚𝑏𝑒𝑑 by an average pooling 

operator. Then, we feed vector 𝑧 into a sequential fully connected layers (𝐷𝑟𝑜𝑝𝑜𝑢𝑡 - 

𝐹𝐶1- 𝑅𝑒𝐿𝑈 - 𝐹𝐶2), where 𝐹𝐶1  ∈  ℝ𝑑𝑒𝑚𝑏𝑒𝑑× 𝑛ℎ𝑖𝑑𝑑𝑒𝑛, 𝑛ℎ𝑖𝑑𝑑𝑒𝑛 𝑖𝑠 number of hidden nodes, 

𝐹𝐶2  ∈  ℝ𝑛ℎ𝑖𝑑𝑑𝑒𝑛 × 𝑛𝑐𝑙𝑎𝑠𝑠, 𝑛𝑐𝑙𝑎𝑠𝑠 is the number of classify classes. 

In reality the class in the medical VQA dataset usually imbalance [2]. Thus, this 

means that the model can be biased toward a class. Nevertheless, we found it beneficial 

of loss function with Focal Loss [67], which affords us to address class imbalance during 

training. We define the model losses mathematically below: 

         𝐿𝐹𝑜𝑐𝑎𝑙(𝑝𝑡) =  −(1 − 𝑝𝑡)𝛾𝑙𝑜𝑔(𝑝𝑡)                    (19) 

where 𝛾 is hyper-parameter and 𝑝𝑡 probability of class 𝑡. As mentioned previously, the 

output of 𝐹𝐶2 is 𝑦 =  [𝑦1; 𝑦2; 𝑦3; . . . ; 𝑦𝑛𝑐𝑙𝑎𝑠𝑠
 ]  ∈  ℝ 𝑛𝑐𝑙𝑎𝑠𝑠. Thus, we use 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦) to 

calculate the probability of each class 𝑝 =  [𝑝1; 𝑝2; 𝑝3; . . . ; 𝑝𝑛𝑐𝑙𝑎𝑠𝑠
 ]  ∈  ℝ 𝑛𝑐𝑙𝑎𝑠𝑠 , 𝑝𝑖 ∈ [0, 

1]. With 𝑡 is ground-true class, the model loss is 𝐿𝐹𝑜𝑐𝑎𝑙(𝑝𝑡). 

 

Figure 3.12: The Focal Loss down weights with factor of (1 − 𝑝𝑡) easily [67]. CE is Cross 

Entropy, FL is Focal Loss. 

  



32 

4. Results and discussion 

4.1. Dataset 

4.1.1. Visual question answering in Radiology (VQA-RAD dataset) 

VQA-RAD [48] is a medical dataset published in 2018 for only radiology. The 

images are equally distributed into the abdomen organs, chest and head. The dataset VQA-

Rad [48] 315 radiology images distributed evenly into head, chest, and abdomen and 

contains 3515 Question-Answer pairs tested by clinicians. Each image can have one or 

many questions, but we take each individual question as the input. The questions are 

classified into 11 classes, like color, abnormality, organ system, modality, attribute, 

counting, object/condition presence, positional reasoning, plane, size, and others. Most of 

the answers are closed-ended which can be answered with short word type (58%), while 

remaining ones are open-ended with unrestricted length of the answers. 

4.2. Evaluation metric 

As mentioned in Section 2 above, Answer Components can be either classification 

type or text-generating (language) type. Respectively, in classification tasks, metrics are 

accuracy, F1 score in general. It treats output as a class and calculates exactly the distance 

of predicted answer to ground truth answer. In language tasks, metrics, which are used to 

evaluate sequence tasks (translation, summarization, caption, et al.) can be BLEU score, 

which estimates the similarity of the two sentences. BLEU score is the most popular 

choice in language tasks, but in med-VQA datasets, sentences are shorter than in other 

datasets, thus it becomes inefficient. However, there are many other metrics currently 

being used in evaluating med-VQA datasets based on Answer components, but in this 

study, we choose accuracy as the main metric because we defined this as a classification 

task and to compare with other approaches. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑠𝑒𝑠
 ∗  100% 

 

4.3. Specific Implementation 

 We have taken great care to ensure that this work is thorough and complete in 

implementing our model. In this section we explain the implementation process in detail. 

  Code: We reused a pre-existing codebase from the SAM model [65] 1 to build our 

own model. [65]. In addition, we created the data processing, data loading, training-test-

inference procedures and visualization as well as all the source code ourselves. 
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Frameworks and libraries: Python programming and the PyTorch framework are used 

to code our approach. We can easily apply the model strategy during training and inference 

with PyTorch as it makes reading, preprocessing, and feeding the training data effortless. 

A tensor board tool is another feature of PyTorch that makes it easier for users to monitor 

training progress and view evaluation results, test losses, and training losses. In addition 

to PyTorch, several other built-in Python libraries are also used, including Numpy for 

matrix calculation, Pandas and Matplotlib for result analysis, and additional auxiliary 

libraries such as Einops, Pydash, torchinfo, Shapely, Timm, Torch-Lightning and 

Transformers. 

  Environment: For implementation, debugging and data analysis we use Google 

Colab virtual machines with the following configuration: 12.7 GB of RAM and Intel Xeon 

CPU, along with GPU T4 with 15GB of VRAM. For training, we use cloud computing 

platform Vast.ai to rent virtual machines equipped RTX 3090 Ti with 24 GB of VRAM 

and AMD Ryzen 9 5900X. 

  Hyperparameters: Table 1 provides a detailed breakdown of the hyperparameters 

used during our training process. There are a few changes that we made from the original 

work: 

Parameter Value 

Learning rate 0.0001 

Epochs 100 

Batch size 16 

Optimizer Adam 

lr scheduler Step lr 

Focal loss’s gamma 2 

N-bit precision 16 bit mixed 

Random seed 42 

Table 1: Overall training hyper parameters 

We set the input size of the image as 488 x 488 and the max padding size of the 

tokenizer for the question is 30. The Adam optimizer algorithm with a learning rate of 1e-

5 was our choice. We also incorporated the StepLR Scheduler during training to make the 

model learn better. as shown in Figure 4.1. Then train the model batch size 16, and max 

num epochs 100. 
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Parameter Notation Value 

General Hidden size 𝑑, 𝑛𝑜 , 𝑑𝑒𝑚𝑏𝑒𝑑 512/768/1024 

Question max length 

padding 

𝑙 20/30/40 

Number of prototypes 𝑛𝑝𝑟𝑜𝑡 500/1000/1500 

Number of Prototype 

learning block 

𝑁 8/10/12 

Number of memory 

slot 

𝑛𝑞 1/6/12 

Dropout Dropout 0.4 

Table 2: Overall model hyper parameters 

  We must choose the hyper-parameter appropriate for each module because of the 

model trade-off between accuracy and resource. As shown in Table 2, a model is 

considered positive if it achieves highest performance with lowest resource so we use 

some combination of model hyper-parameters to evaluate before training. 

 

Figure 4.1: The learning rate changes following epochs of StepLR. We use step size 15 and 

gamma = 0.3 for our model. 
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4.4. Results and analysis 

 Our method demonstrated superior performance compared to the current state-

of-the-art approach, as indicated in Table 3. In the evaluation on VQA-Rad datasets, 

our approach surpassed other methods in both open-ended and overall performance. 

Table 3 demonstrates how our proposed model performs better than the current state-

of-the-art method Q2ATransformer by an absolute margin of 0.45% overall, with 

improvements of 0.3% and 0.72% in open and closed-ended scenarios, respectively. 

But compared to the best methods on closed-ended questions, our model 11.19% 

absolute improvement on open-ended questions and 4.43% overall. Based on these 

results, we can see our model shows significant benefits when answering open-ended 

questions, which supports our idea by using associative memory to enrich the memory 

of the network and prototype learning to learn representative prototypes from visual-

linguistic features.  

On the other hand, we also train and compare our model with fine tuning the 

model hyper-parameters follow table 4. We compare performance and resources in 

each module to discover fine parameters for our model with RTX 3090 Ti with 24GB 

of RAM and AMD Ryzen 9 5900X. 

 

Table 3: Comparisons our method with the state-of-the-art methods on the VQA-RAD test set. 

Methods Closed Open Overall 

BAN-VQAMix [20] 74.0 53.8 65.9 

CMSA-MTPT [32] 77.3 56.1 68.8 

MMQ-BAN [5] 75.8 53.7 67.0 

FITS [8] 82.0 68.2 76.5 

hi-VQA [15] - - 76.3 

Q2ATransformer [40] 81.2 79.19 80.48 

Ours 81.98 79.39 80.93 

 

To find the main generalization of the model. First, we try general hidden size with 

the rest of parameters as the same as the original work. As shown in Table 4, the general 

hidden size set to 1024 is better than the others. However, the model size increased 43M 

compared to 768 but the accuracy just increased 0.4%. Therefore, we trade-off the 

accuracy for resources and set the general hidden size to 768 for other hyper-parameters. 
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Figure 4.2: Examples from VQA-RAD dataset. 

 

Figure 4.3: Confusion Matrix of abnormality questions. 
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Table 4: Comparisons with modified size of hidden on the VQA-RAD test set. 

General hidden size Model size (parameter) Accuracy (%) 

512 187.5M 65.3 

768 213M 73.8 

1024 255M 74.2 

 

Table 5: Comparisons with modified max padding length. 

Max padding length Accuracy (%) 

10 62.4 

30 73.8 

50 68.1 

 

We fine-tune the parameters following the sequence of architecture starting with 

max padding length of question. Our tests showed in table 5 that the model's learning 

capacity can be limited by using small or excessively large values for these 

hyperparameters. Additionally, we note that the input question tokens have a maximum 

length of 32. Therefore, 30 is the maximum padding length suitable for encoding the 

query. 

In conclusion, our model overcomes the OOD problem as shown in Figure 4.2 and 

generalizes. Figure 4.3 shows a confusion matrix of question abnormality questions, our 

model predicts almost respond well to non-binary questions. 

 

4.4.1. The impact of the Associative Memory Module 

We adopt STM[27] as the AMM for our model, with the two memory modules 

serving as the relational and item memory. The AMM of our model uses a memory 

network strategy, directly capturing the bi-linear representations that are kept in the 

relational memory through high-dimensional transformations and enriching the visual- 

linguistic features. Our experiments on AMM are present on table 6. 

As shown on Table 6, our model achieves groundbreaking accuracy with accuracy, 

but the training time is much higher without AMM. Furthermore, AMM helps models 

converge faster and learn better (See in Figure 4.2). Therefore, the memory module  

 

https://docs.google.com/document/d/10exSuLIElIhsTnIj3o9DpfgmgkYAh2sWM0SWVAHH2So/edit?fbclid=IwAR0inGclOOdPJts-cFXdRc6p01wo3jmiDFhK9OUGzkn1CwFPjo1qPpsWIDc#heading=h.44bvf6o
https://docs.google.com/document/d/10exSuLIElIhsTnIj3o9DpfgmgkYAh2sWM0SWVAHH2So/edit?fbclid=IwAR0inGclOOdPJts-cFXdRc6p01wo3jmiDFhK9OUGzkn1CwFPjo1qPpsWIDc#heading=h.44bvf6o
https://docs.google.com/document/d/10exSuLIElIhsTnIj3o9DpfgmgkYAh2sWM0SWVAHH2So/edit?fbclid=IwAR0inGclOOdPJts-cFXdRc6p01wo3jmiDFhK9OUGzkn1CwFPjo1qPpsWIDc#heading=h.44bvf6o
https://docs.google.com/document/d/10exSuLIElIhsTnIj3o9DpfgmgkYAh2sWM0SWVAHH2So/edit?fbclid=IwAR0inGclOOdPJts-cFXdRc6p01wo3jmiDFhK9OUGzkn1CwFPjo1qPpsWIDc#heading=h.49gfa85
https://docs.google.com/document/d/10exSuLIElIhsTnIj3o9DpfgmgkYAh2sWM0SWVAHH2So/edit?fbclid=IwAR0inGclOOdPJts-cFXdRc6p01wo3jmiDFhK9OUGzkn1CwFPjo1qPpsWIDc#heading=h.49gfa85
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Table 6: Comparison of models with different hyper parameters of AMM 

Model Accuracy (%) Average training time 

(s/epoch) 

w/o AMM 62.4 61 

𝑛𝑞 =  1 68.8 65 

𝑛𝑞 = 6 75.2 96 

𝑛𝑞 = 12 79.7 119 

 

 

Figure 4.4: Training process of model with AMM hyper-parameter modification and the others 

hyper-parameter same as above. 

facilitates for the features fusion module learning a set of representative examples for each 

class. However, we also found that AMM consumes a lot of resources (See Figure 4.3). After 

all, AMM with 𝑛𝑞 = 12 We decided to trade-off resources for precision with one of the 

reasons presented in the next part. 
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Figure 4.5: GPU consumption of model on VQA-RAD. The usage is calculated on the 

entire model process with batch size 16 and similar to the above hyper-parameter. 

4.4.2. The impact of Prototype Learning 

Generalization performance of the model: Prototype learning is a technique that 

involves learning a set of prototypes or representative examples for each class in a 

classification problem. These prototypes act as exemplars of each class, embodying the 

key features that differentiate one class from another. The Hopfield layer facilitates 

hierarchical learning, where coarse-to-fine the visual-linguistic features are extracted from 

the text and image embeddings. This allows the model to grab both local and global 

semantic information effectively. 

Table 7: The model accuracy (%) of each set number prototype and number of 

block prototype learning. 

No of prototype/block 5 10 15 

500 80.1 80.47 79.96 

1000 80.24 80.93 80.24 

1500 80.18 80.51 80.04 
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5. Conclusion 

In this thesis, we have introduced a new architecture in medical VQA, that is based 

on the concept of Associative Memory a to enrich the visual features and Prototype 

Learning to represent classes. In addition, our model is designed to overcome the data 

limitations and improve model generalization. In a benchmarking experiment the 

architecture outperformed all other methods and is demonstrated to memorize and visual-

linguistic reasoning in answering visual medical questions. 

However, there are some limitations in our proposed method that need to be 

resolved. First, the Associative Memory Module works fine but consumes quite a bit of 

VRAM. This can be improved with optimizing the AMM or change to a new core operator 

in AMM. Second, the Prototype Learning is not performed as well as we expected, and 

the effective architecture needs to be created to improve its performance. 

In conclusion, this thesis has proposed a new approach for the Med-VQA problem, 

exhibiting considerable increases in accuracy compared to state-of-the-art models. The 

future work highlighted in this thesis further improves the proposed method and 

contributes to the model generalization. The results of this thesis will contribute to the 

VQA and multimodal. 
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