

# Visual Question Answering for Medical Data Using a Visio-Linguistic Model

Students

Tran Quang Duc Le Viet Tien Tran Thi Kim Thanh

Advisor Bui Van Hieu





### Table of content

1. Introduction
2. Methodology
3. Experimental result
4. Conclusion



# INTRODUCTION



## **Problem & Motivation**

 Medical Visual Question Answering (Med-VQA) is a challenging task that combines the fields of CV and NLP.







## **Problem & Motivation**

• Med-VQA is still in its infancy and is far from practical use[1].



[1] Bazi, Y., Rahhal, M. M., Bashmal, L., & Zuair, M. (2023). Vision–Language Model for Visual Question Answering in Medical Imagery. Bioengineering, 10(3), 380. https://doi.org/10.3390/bioengineering10030380





## **Problem & Motivation**

 The current medical data is limited. [2]
--->The efficacy of medical models is suboptimal.



[2] Nguyen, B. D., Do, T., Nguyen, B. X., Do, T., Tjiputra, E., & Tran, Q. D. (2019). Overcoming Data Limitation in Medical Visual Question Answering. ArXiv. /abs/1909.11867



#### Question: Is this a singular or multilobulated lesion? Answer: Multilobulated



## **Related work**

#### VQA-RAD

| Team/Method    | lmage<br>Encoder     | Language<br>Encoder | Fusion                                   | Output<br>Mode | Other<br>Technique(s)                                                         |
|----------------|----------------------|---------------------|------------------------------------------|----------------|-------------------------------------------------------------------------------|
| BAN-VQAMix     | CNN                  | LSTM                | BAN                                      | Classification | Triplet Mixup<br>Scheme                                                       |
| MTPT-CMSA      | Multi- ResNet-<br>34 | LSTM                | CSMA                                     | Classification | Cross-modal self-<br>attention, Multi-task<br>pre-training with<br>extra data |
| hi-VQA         | EfficientNet-b5      | RadBERT             | Multi-head<br>attention(Tra<br>nsformer) | Classification |                                                                               |
| MMQ-BAN        | MMQ                  | LSTM                | BAN/SAN                                  | Classification | Multiple Meta-<br>model Quantifying                                           |
| Q2ATransformer | Swin<br>Transformer  | BERT                | Multi-head<br>attention(Tra<br>nsformer) | Classification |                                                                               |





## Objective

1. Introduce an architecture Med-VQA with Associative Memory Module (AMM)

- 2. Practical Prototype Learning in features fusion.
- 3. We achieved an improved result on VQA-RAD.



# METHODOLOGY





### Methodology





#### Classify/Text generate





#### Fpt University TRƯỜNG ĐẠI HỌC FPT



The architecture of EfficientNet-b5 model



Α

HISTORY

MRI OF THE BRAIN

Exam Date: 9/8/14

PROCEDURE

2) T1 3D sagittal MPRAGE.

3) T2 FLAIR sagittal.

1) Localizer.

Name: DOB: 12/28/1954 Female

Referring Phys.: GunnarHeuser, M.D.

## Methodology Text Encoder

# **Pre-trained:** RadBERT-RoBERTa-4m **By:** UCSD-VA-health

 Trained with 4 million radiology reports deidentified from US VA hospital





This is a 59-year-old female with exposure to mold and mercury. The patient has symptoms of seizures, memory loss, and numbness in hands and left arm.

Using a 3 Tesla Siemens Verio MRI Open system, the following sequences were obtained:

4) DWI axial.

5) SWI axial.

6) T2 FLAIR axial. 7) T2 TSE axial.





### Methodology



**Overview of Attentive Memory Module** 







# **Methodology** Self-Attentive Memory Outer Product Attention

$$A^{\otimes}(q, K, V) = \sum_{i=1}^{n_{kv}} F(q)$$

101.00

Where  $A^{\bigotimes} \in \mathbb{R}^{d_{qk} \times d_{v}}$ ;  $q, k_{i} \in \mathbb{R}^{d_{qk}}, v \in \mathbb{R}^{d_{v}}$ ,  $\bigotimes$  is outer product,  $\bigcirc$  is element-wise multiplication and *F* is chosen as the tanh function.





#### Given memory input M:





 $SAM_{\theta}(M)[l] = A^{\otimes}(M_{q}[l], M_{k}, M_{v})$ 

Where  $W_{a}, W_{k}, W_{m}$  is weight parameter, LN is Layer Normlization Source: Hung el al (2020)





Extract items

Associate items



### Methodology **Associative Memory Module**

![](_page_16_Figure_2.jpeg)

![](_page_16_Figure_3.jpeg)

$$\begin{aligned} X_t &= f_1(x_t) \otimes f_2(x_t) \\ \mathcal{M}_t^i &= \mathcal{M}_{t-1}^i + X_t \\ \mathcal{M}_t^i &= F_t(\mathcal{M}_{t-1}^i, x_t) \odot \mathcal{M}_{t-1}^i + I_t(\mathcal{M}_{t-1}^i, x_t) \odot X_t \end{aligned}$$

where  $f_1$  and  $f_2$  are fully connected neural networks  $I_{f}$  and  $F_{f}$  are input and forget gate

and current input data  $x_{t}$ .

![](_page_17_Picture_0.jpeg)

### Methodology **Associative Memory Module**

**Construct relation memory** 

![](_page_17_Figure_3.jpeg)

$$v_t^r = softmax(f_3(x_t)^T)$$

where  $f_3$  is a fully connected neural network

$$\mathcal{M}_{t}^{r} = \mathcal{M}_{t-1}^{r} + \alpha_{1}SAM_{\theta}(\mathcal{M}$$

where  $\alpha_1$  and  $\alpha_2$  are scaling hyper-parameters

 $\mathcal{M}_{t-1}^r f_2(x_t)$ 

 $\mathcal{A}_{t}^{l} + \alpha_{2} v_{t}^{r} \otimes f_{2}(x_{t})$ 

![](_page_18_Picture_0.jpeg)

# Methodology

#### **Associative Memory Module**

![](_page_18_Figure_3.jpeg)

$$\mathcal{M}_t^i = \mathcal{M}_t^i + \alpha_3^{} G_1$$

 $\alpha_{2}$  is a combining hyper-parameter

$$\circ V_f \circ \mathcal{M}_t^r$$

where  $V_{f}$  is a function use to the input tensor be flattens the first two dimensions.  $G_1$  is a Multilayer perceptron neural network that maps  $\mathbb{R}^{(n_{kv} \times d) \times d} \to \mathbb{R}^{d \times d}$ 

![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_1.jpeg)

![](_page_19_Picture_2.jpeg)

$$o_t = G_2 \circ V_l \circ G_3 \circ V_l \circ \mathcal{M}_t^r$$

 $G_2$  and  $G_3$  are Fully Connected neural networks

where  $V_{i}$  is a function that the input tensor flattens the last two dimensions

![](_page_20_Figure_0.jpeg)

Figure: Self-Attention (left) and Cross-Attention (Right).

![](_page_21_Picture_0.jpeg)

## Methodology

#### **Encoder-Decoder attention**

![](_page_21_Figure_3.jpeg)

Figure: Encoder-Decoder attention.

![](_page_21_Picture_5.jpeg)

![](_page_22_Picture_0.jpeg)

### Methodology **Prototype Learning Block**

![](_page_22_Figure_2.jpeg)

Figure: Detail of Prototype Leaning Block.

![](_page_22_Picture_4.jpeg)

![](_page_23_Picture_0.jpeg)

#### Methodology **Prototype Learning Block**

Formula of Hopfield layer with R is input

![](_page_23_Figure_3.jpeg)

![](_page_23_Picture_4.jpeg)

![](_page_24_Picture_0.jpeg)

# Methodology

#### **Answer components**

![](_page_24_Picture_3.jpeg)

Fully Connected layer for classification Image source: https://builtin.com/machine-learning/

![](_page_24_Picture_6.jpeg)

![](_page_25_Picture_0.jpeg)

### Methodology Loss function

Focal Loss:

 $L_{Focal}(p_t) = -(1-p_t)^{\gamma} log(p_t)$ 

![](_page_25_Picture_4.jpeg)

#### Image source: Lin el al (2017)

![](_page_27_Picture_0.jpeg)

Table 3. Comparisons our method with the state-of-the-art methods on the VQA-RAD test set

| Methods        | Closed | Open         | Overall |
|----------------|--------|--------------|---------|
| BAN-VQAMix [*] | 74.0   | 53.8         | 65.9    |
| CMSA-MTPT [*]  | 77.3   | 56.1         | 68.8    |
| MMQ-BAN [*]    | 75.8   | 53.7         | 67.0    |
| FITS [*]       | 82.0   | 68.2         | 76.5    |
| hi-VQA         | -      | -            | 76.3    |
| Q2ATransformer | 81.2   | <u>79.19</u> | 80.48   |
| Ours           | 81.98  | 79.39        | 80.93   |

![](_page_27_Picture_4.jpeg)

![](_page_28_Picture_0.jpeg)

#### **Confusion Matrix**

![](_page_28_Figure_3.jpeg)

![](_page_28_Picture_4.jpeg)

![](_page_28_Figure_5.jpeg)

![](_page_29_Picture_0.jpeg)

![](_page_29_Figure_2.jpeg)

Comparison of models with different hyper parameters of AMM

#### Training process of model with/without AMM hyper-parameter modidication

![](_page_30_Picture_0.jpeg)

![](_page_30_Figure_2.jpeg)

Figure 4.4: GPU consumption of model on VQA-RAD. The usage is calculated on the entire model process with batch size 16 and similar to the above hyper-parameter.

![](_page_31_Picture_0.jpeg)

| No of prototype/block | 5     | 10    | 15    |
|-----------------------|-------|-------|-------|
| 500                   | 80.1  | 80.47 | 79.96 |
| 1000                  | 80.24 | 80.93 | 80.24 |
| 1500                  | 80.18 | 80.51 | 80.04 |

The model accuracy (%) of each set number prototype and number of block prototype learning.

![](_page_31_Picture_4.jpeg)

# CONCLUSION

![](_page_32_Picture_1.jpeg)

## CONCLUSION

![](_page_33_Picture_1.jpeg)

- An architecture in medical VQA based on Associative Memory and Prototype Learning.
- The result is not significantly improved.

## **FUTURE WORK**

![](_page_34_Picture_1.jpeg)

- Experiment on other datasets with similar limitations and improve the model.
- Experiment on some data augmentation techniques to enrich the datasets.

![](_page_35_Picture_0.jpeg)

### Visualization

| Question:             | What is the location<br>of the mass? | Where is the colon most<br>prominent from this view? | which organ syst<br>abnormal in this ir |
|-----------------------|--------------------------------------|------------------------------------------------------|-----------------------------------------|
| Answer:               | Head of the pancreas                 | Left                                                 | cardiovascula                           |
| Question<br>Category: | Positional                           | Location                                             | Modality                                |
| Q2A-<br>Tranformer    | Head of the pancreas                 | Right                                                | Lung                                    |
| Our<br>Model:         | Head of the pancreas                 | Left                                                 | Right lung                              |

![](_page_35_Picture_3.jpeg)

![](_page_35_Picture_4.jpeg)

tem is mage?

![](_page_35_Picture_6.jpeg)

Is the diaphragm flat on either side?

No

Yes/No

Yes