
AIP490 Project

A learning-based method of Automatic

Music Transcription

by

Tai Do, Hoang Nguyen, Hoang Nguyen

ITS Faculty FPT University HCMC

Final Capstone Project 2 of 58

THE FPT UNIVERSITY HO CHI MINH CITY

A learning-based method of Automatic

Music Transcription

by

Tai Do, Hoang Nguyen, Hoang Nguyen

Supervisor: HaiLT, Ph.D

A final year capstone project submi�ed in partial fulfillment of the requirement
for the Degree of Bachelor of Artificial Intelligent in Computer Science

DEPARTMENT OF ITS

THE FPT UNIVERSITY HO CHI MINH CITY

Final Capstone Project 3 of 58

ACKNOWLEDGMENTS

We would like to express our deepest appreciation to all those who provided us the possibility

to complete this report:

1. Le Thanh Hai, Ph.D.:

- Our supervisor, whose guidance and expertise throughout this project.

- His insightful feedback significantly improved the quality of our work.

2. We would like to express our deep appreciation to Mr. Nguyen Quoc Trung and Mr. Le

Phu Nguyen. Their insightful reviews and constructive feedback provided throughout

the project significantly enhanced the quality of our work.

Final Capstone Project 4 of 58

AUTHOR CONTRIBUTIONS

The contributions of the authors to this work are outlined as follows:

Conceptualization:

- Do Phu Anh Tai: Identified the potential of deep learning for automatic music

transcription (AMT) and proposed the research project.

- Nguyen Huu Hoang, Nguyen Duc Hoang: Contributed to refining the project scope and

research objectives, focusing on polyphonic piano music transcription.

Methodology:

- Do Phu Anh Tai: Led the research on deep learning architectures for AMT, particularly

exploring the use of Long Short-Term Memory (LSTM).

- Nguyen Huu Hoang: Modified the A�ention mechanism.

- Nguyen Duc Hoang: Developed the data preprocessing pipeline, including feature

extraction, audio segmentation, and music notation labeling.

Writing—Review and Editing:

- Do Phu Anh Tai: Contributed to sections on data preprocessing and neural network

architecture selection.

- Nguyen Huu Hoang: Drafted the initial manuscript, mainly responsible for the project’s

report.

- Nguyen Duc Hoang: Revised the manuscript for clarity and ensured accurate

All Authors have read and agreed to the Final Capstone Project document.

Final Capstone Project 5 of 58

ABSTRACT

The capability of transcribing music audio into music notation is a fascinating example of

human intelligence. It involves perception (analyzing complex auditory scenes), cognition

(recognizing musical objects), knowledge representation (forming musical structures), and

inference (testing alternative hypotheses). Automatic Music Transcription (AMT), i.e., the

design of computational algorithms to convert acoustic music signals into some form of music

notation, is a challenging task in signal processing and artificial intelligence. It comprises

several subtasks, including multi-pitch estimation (MPE), onset and offset detection,

instrument recognition, beat and rhythm tracking, interpretation of expressive timing and

dynamics, and score typese�ing. This project investigates the application of deep learning for

AMT.

Keywords: Automatic Music Transcription; Music signals; Music notation

Final Capstone Project 6 of 58

CONTENTS

ACKNOWLEDGMENTS 3

AUTHOR CONTRIBUTIONS 4

ABSTRACT 5

CONTENTS 6

List of Figures 9

List of Tables 11

1. INTRODUCTION 12

2. RELATED WORK 14

2.1 Automatic Music Transcription: An Overview 14

2.2 Deep Neural Networks for Piano Music Transcription 15

2.3 Music Transcription Using Deep Learning 15

3. PROJECT MANAGEMENT PLAN 16

4. MATERIALS AND METHODS 17

4.1 Dataset 17

4.1.1 Dataset Description 17

4.1.2 Dataset Preprocessing 17

4.1.3 Labels 18

4.1.4 Data Insight 21

4.2 Method 22

4.2.1 Constant Q Transform 22

Final Capstone Project 7 of 58

4.2.2 Long Short-Term Memory 23

4.2.3 Bidirectional Long Short-Term Memory 27

4.2.4 A�ention Mechanism 28

4.2.5 Modified A�ention Mechanism 30

4.2.6 Multihead A�ention 30

4.2.7 Modified Multihead A�ention 33

4.2.8 Tanh Activation 35

4.2.9 Sigmoid Activation 35

4.2.10 Binary Cross-Entropy 36

4.2.10 Weighted Binary Cross-Entropy 37

4.2.11 Early Stopping 37

4.2.12 F1-score 37

4.2.13 Post-processing 38

5. EXPERIMENTS 39

5.1 Base model Long Short-Term Memory 39

5.2 Bidirectional Long Short-Term Memory 40

5.3 Long Short-Term Memory - A�ention 41

5.4 Bidirectional Long Short-Term Memory - A�ention 43

5.5 A�ention - Long Short-Term Memory 44

Final Capstone Project 8 of 58

5.6 A�ention - Bidirectional Long Short-Term Memory 46

5.7 Multihead A�ention - Bidirectional Long Short- Term Memory 47

6. RESULTS 48

6.1 Weighted Binary Cross-entropy 52

6.2 Multihead A�ention - Bidirectional Long Short- Term Memory with MAPS only 53

7. DISCUSSIONS 54

7.1 Limitation 54

7.1.1 Polyphony 54

7.1.2 Tremolo 54

7.1.2 Up-Tempo 55

7.1.3 Post-processing 55

7.2 Future Work 55

8. CONCLUSIONS 56

9. REFERENCES 57

Final Capstone Project 9 of 58

List of Figures

4.1. Figure 1. Data represented in an AMT system 13

4.1.2. Figure 2. Piano Note 18

4.1.3. Figure 3. Labels Example 20

4.1.4. Figure 4. Total number of Label 1 vs Label 0 21

4.1.4. Figure 5. CQT Spectrum 21

4.2.2. Figure 6. RNN Cell 23

4.2.2. Figure 7. Vanishing Gradient 24

4.2.2. Figure 8. LSTM Cell 25

4.2.2. Figure 9. Forget Gate 25

4.2.2. Figure 10. Input Gate 26

4.2.2. Figure 11. Cell State 26

4.2.2. Figure 12. Output 27

4.2.3. Figure 13. Bidirectional Long Short-Term Memory 27

4.2.4. Figure 14. A�ention Mechanism 29

4.2.6. Figure 15. Scaled Dot-Product A�ention 31

4.2.6. Figure 16. Multihead A�ention 32

4.2.7. Figure 17. Modified Multihead A�ention 34

4.2.8. Figure 18. Tanh Function 35

4.2.9. Figure 19. Sigmoid Function 36

5.1. Figure 20. Base Model & Modified Base Model 40

5.2. Figure 21. Bidirectional Long Short-Term Memory Model 41

5.3. Figure 22. Long Short-Term Memory - A�ention Model 42

5.4. Figure 23. Bidirectional Long Short-Term Memory - A�ention Model 43

Final Capstone Project 10 of 58

5.5. Figure 24. Transformer architecture 44

5.5. Figure 25. A�ention - Long Short-Term Memory Model 45

5.6. Figure 26. A�ention - Bidirectional Long Short-Term Memory Model 46

5.7. Figure 27. Multihead A�ention - Bidirectional Long Short-Term Memory Model 47

6. Figure 28. Loss and Accuracy in train of Base Model and Best Model 50

6. Figure 29. Predicted result of Base Model, Best Model vs Ground Truth value 51

6.1. Figure 30. Predicted result of Multihead A�ention - BiLSTM when use WBCE
and BCE vs Ground Truth value 52

6.2. Figure 31. Predicted result of Multihead A�ention - BiLSTM when use Multiple
dataset and Single dataset vs Ground Truth value 53

Final Capstone Project 11 of 58

List of Tables

3. Table 1. Project plan 16

3. Table 2. Source code and data 16

4.1.2. Table 3. Train, Valid and Test set 17

4.1.3. Table 4. Text file example. It contains onset/offset time and notes 19

6. Table 5. Result Table 48

Final Capstone Project 12 of 58

1. INTRODUCTION

Music transcription is the practice of converting music, which was previously un-notated

and/or unpopular as wri�en music, into a musical notation. This task is challenging due to the

complex nature of music, which can be polyphonic (meaning that multiple notes are played

simultaneously) and contain a wide range of dynamics and articulations. This intricate art

form bridges the auditory and visual dimensions of music, allowing musicians, composers,

and enthusiasts to analyze, interpret, and reproduce musical compositions with precision.

Notating a piece or a sound previously unannotated, but needs the knowledge of music to do,

with artificial intelligence everyone can do it without learning music theory. The main goal of

Automatic Music Transcription (AMT) was to improve the best accuracies that were obtained

using traditional Automatic methods and try to get closer to a professional musician's

transcription ability.

The primary objective of this project is to explore the capabilities of Deep Learning approaches

for tackling the challenge of automatic music transcription. We will delve into various data

preprocessing techniques to prepare the raw audio data for neural network models. This stage

ensures the data is structured in a way that the models can effectively learn from it. Next, we

will experiment with a selection of neural network architectures. Our focus will be on

transcribing polyphonic music specifically produced by the piano instrument. By evaluating

the performance of different models, we aim to contribute valuable insights into the

effectiveness of deep learning for AMT tasks. In our approach, the musical's signal was treated

as sequential data and a network model, LSTM (Long Short-Time Memory), was built for

realizing audio-to-score conversion. Recordings of piano music in .wav file format is inpu�ed

into our algorithm, and the output is MIDI (Musical Instrument Digital Interface) file that can

be easily converted into music score.

Final Capstone Project 13 of 58

Figure 1. Data represented in an AMT system, image from [22]

Final Capstone Project 14 of 58

2. RELATED WORK

In the past several decades, multiple a�empts have been developed for Automatic Music
Transcription (AMT) for polyphonic music. The first approach to AMT was developed in the
1970s by Moorer [1] [2]. Following his work, in the 1990s, Goto and Muraoka [3] achieved
decent polyphonic percussion tracks transcription. Unsupervised learning approaches [4]
assume that prior knowledge is not required for music transcription, and it’s considered as the
first step towards Deep Learning approach in Music Transcription. Several approaches include
traditional signal processing methods [5], [6], probabilistic modeling [7], Bayesian approaches
[8], non-negative matrix factorization (NMF) [9], [10], [11], [12], and neural networks [13], [14].
All of these methods have pros and cons and the research has not converged to a single
approach. For example, traditional signal processing methods are simple and fast and
generalize be�er to different instruments, while deep neural network methods generally
achieve higher accuracy on specific instruments (e.g., piano). Bayesian approaches provide a
comprehensive modeling of the sound generation process, however models can be very
complex and slow. With the development of deep learning in recent years, applying neural
networks to accomplish AMT has inspired research interests. A model based on CNN was
proposed in [15]. A very interesting approach proposed in 2007 [16] used 87 Support Vector
Machine (SVM) classifiers to perform frame-level classification, each SVMclassifiers performed
an one-versus-all (OVA) operation, and then a Hidden Markov Model (HMM) post-processing
was adopted to smooth the results temporally. Various AMT a�empts have been developed,
however, only a few researches adopted LSTM despite its capability of dealing with sequential
data.
Our concepts and codes are adapted based on the work of [17] and [18]. [22] paper also helps
to get an overview of Automatic Music Transcription.

2.1. Automatic Music Transcription: An Overview
Automatic Music Transcription (AMT)[22] is the task of transcribing music audio into music
notation. It is considered a fundamental problem in the fields of music signal processing and
music information retrieval (MIR). AMT is closely related to other music signal processing
tasks such as audio source separation, which also involves estimation and inference of source
signals from mixture observations. It is also useful for many high-level tasks in MIR such as
structural segmentation, cover-song detection and assessment of music similarity, since these
tasks are much easier to address once the musical notes are known.

Final Capstone Project 15 of 58

However, compared to other problems in the music signal processing field, there are several
factors that make AMT particularly challenging:

- Polyphony:Music audio contains a mixture of multiple sources (e.g., instruments,
vocals) with different pitch, intensity and timbre (sound quality), with each source
producing one or more musical voices.

- Harmonic: Overlapping sound events often exhibit harmonic relations with each other;
for any consonant musical interval, the frequencies form small integer ratios, so that
their harmonics overlap in frequency, making the separation of the voices more
difficult.

- Musical Timing: The timing of musical voices is governed by the regular metrical
structure of the music. In particular, musicians pay close a�ention to the
synchronization of onsets and offsets between different voices, which violates the
common assumption of statistical independence between sources which otherwise
facilitates separation.

- Annotate: Annotating ground-truth transcriptions for polyphonic music is very time
consuming and requires high expertise.

The paper provided a high-level overview of Automatic Music Transcription, emphasizing the
intellectual merits and broader impacts of this topic, and linking AMT to other problems
found in the wider field of digital signal processing.

2.2. Deep Neural Networks for Piano Music Transcription
Deep Neural Networks for Piano Music Transcription (2017)[17] is a project developed by
Diego González Morín. The project likely focuses on applying deep learning techniques,
specifically comparing Deep Neural Networks (DNN) and Long Short-Term Memory (LSTM)
Networks performances, to the task of Automatic Music Transcription (AMT) for piano music.
The project had concluded that DNN with 3 layers and a Dropout rate of 10% (0.1) got the best
performance.

2.3. Music Transcription Using Deep Learning
Music Transcription Using Deep Learning (2017)[19] developed by a team from Stanford
University: Luoqi Li, Isabella Ni, Liang Yang. Inspired by [17], the paper inherited the [17]
model but did some modifications as well as verified the performance between Deep Neural
Networks (DNN) and Long Short-Term Memory (LSTM) Networks in Automatic Music
Transcription (AMT) tasks for piano music.

Final Capstone Project 16 of 58

3. PROJECT MANAGEMENT PLAN

Table 1. Project plan

Task name Priority Owner Start date End date Status Issues

Find documents High All Students … … Done …

Review papers High All Students … … Done …

Review and
analyze dataset

High Duc Hoang … … Done …

Experiment Medium All Students … … Done …

Compare
results

Medium Tai … … Done …

Writing
appendix

Medium Huu Hoang … … Pending …

Future work Low All Students … … Defined …

Table 2. Source code and data

Items Link Description

Data 1

Data 2

MAPS

MAESTRO

…

Version 3.0.0

Source code Link …

https://adasp.telecom-paris.fr/resources/2010-07-08-maps-database/
https://magenta.tensorflow.org/datasets/maestro
https://github.com/AnhTai0207/AIP_Music_Transcription.git

Final Capstone Project 17 of 58

4. MATERIALS AND METHODS

4.1. Dataset:

4.1.1. Dataset Description:

To accomplish the proposed goal of the project, the selection of the dataset was as important as
the Neural Network structures chosen. In this case, we carried out our experiments using the
publicly available dataset: ”MIDI Aligned Piano Sounds (MAPS)” [24] and "MIDI and Audio
Edited for Synchronous Tracks and Organization (MAESTRO)" [25]. The main advantage of
the two datasets is that every WAV file comes along with a text file with different pitch
durations and exact onset time.
MAPS contains a diverse collection of piano sounds, including isolated notes, chords, and
complete pieces. Notably, each audio recording is meticulously aligned with a corresponding
text file detailing the pitch, duration, and exact onset time of each note. This precise alignment
between audio and note-level information makes MAPS a valuable asset for training models to
handle musical tasks. More detailed statistics on the MAPS dataset are available at
h�ps://adasp.telecom-paris.fr/resources/2010-07-08-maps-database/.
The MAESTRO dataset, on the other hand, consists of over 200 hours of paired audio and
MIDI recordings from ten years of International Piano-e-Competition. Audio and MIDI files
are aligned with 3 ms accuracy and sliced to individual musical pieces, which are annotated≃
with composer, title, and year of performance. Uncompressed audio is of CD quality or higher
(44.1–48 kHz 16-bit PCM stereo). More detailed statistics on the MAESTRO dataset are
available at h�ps://magenta.tensorflow.org/datasets/maestro.

4.1.2. Dataset Preprocessing:

The first step was to divide the dataset into 3 subsets for training, validation and testing set
based on 80-10-10 percentage ratio.

Dataset Train Val Test

MAESTRO 962 174

MAPS 23,928 2,991 2,991

Table 3. Train, Valid and Test set

Final Capstone Project 18 of 58

Since it is inefficient to deal with audio files directly, to extract features, the spectrum of the
audio signal '.wav' files is used as the main feature of the system. Methods widely used for
preprocessing audio signals include Short-Time Fourier Transform (STFT), Mel Frequency
Cepstrum Coefficients (MFCC) and Constant Q Transform (CQT) [21]. Upon basic research,
MFCC is a feature extraction technique widely used in speech and audio processing and has
been used for various machine learning tasks, such as speech recognition and music analysis.
Holding a strong belief in the potential of MFCC, it was fairly disappointing to discover that
CQT outperforms MFCC in music notating tasks based on the experiments in [17]. Therefore,
CQT is chosen as the preprocessing method to extract features for our model.

Inherited from the experiments in [17], firstly, audio signals and a sampling frequency of
44.1kHz were extracted from the '.wav' file. The audio signals were then transformed first from
stereo to mono by computing the mean of the multichannel signal, and then Constant Q
Transform is separately extracted from the mono audio signal. The CQTs were computed over
7 octaves (C, D, E, F, G, A, and B, illustrated in Figure 2) with 36 bins per octave and a hop
size of 512 samples. Consequently, 252 features per frame were obtained.

Figure 2. Piano Note, image from “h�ps://www.pianote.com/blog/how-to-read-piano-notes/”

The data was represented as a matrix of dimensions number of frames x number of features.
The frames of each song were concatenated together and split into individual files of 40000
frames per file.

4.1.3. Labels:

As each audio file had a text file with information about the pitch, duration and onset time,
time pairing the pitches with each frame was straightforward. The labels are created from the
'.txt' files in the form of multilabel one-hot representation. Table 3 shows a small part of a text
file. The number of possible pitches was 88, and therefore, the label for each frame was
represented as a vector of dimension 88, se�ing to one of the pitches that were played in the
current frame and zero otherwise. This means, at each time frame, a vector of 88 elements

Final Capstone Project 19 of 58

corresponds to the 88 notes in a piano, with 1 representing that a note is played at the time
frame and 0 representing that a note is not played. The vectors were stacked together and
separated into files of 40000 thousand frames per file. This way, each feature file has its
corresponding paired labels file to align with the input matrix.

Table 4. Text file example. It contains onset/offset time and notes

OnsetTime OffsetTime MidiPitch

0.988281 1.111979 34

1.109375 1.135417 53

1.109375 1.161458 62

1.153646 1.196615 58

1.518229 1.549479 74

1.527344 1.563802 62

1.533854 1.566406 58

1.539062 1.566406 82

1.518229 1.567708 86

1.540365 1.578125 53

1.518229 1.602865 77

1.652344 1.682292 82

1.634115 1.705729 74

1.628906 1.705729 86

1.651042 1.746094 62

1.649740 1.760417 58

1.661458 1.776042 53

1.923177 1.949219 74

1.917969 1.958333 87

Final Capstone Project 20 of 58

Figure 3. Labels Examples

Final Capstone Project 21 of 58

4.1.4. Data Insight:

First insight into the data, our team recognised that there could be an imbalance between the
label 0 and label 1 since a normal person can only play a maximum of 10 notes at a time and
there are 88 notes in a standard piano. By plo�ing the Labels data (Figure 3), we can verify our
assumption. Our team did a simple comparison by counting the total number of Label 0 and
Label 1 in the training set. The difference between Label 0 and Label 1 is ~41 times
(5.36B/0.129B).

Figure 4. Total number of Label 1 vs Label 0

Due to imbalanced data, the Machine Learning model might be exposed to the majority class
much more frequently, creating bias toward the majority class, in this case is label 0. To
address the problem our team came to a solution of using Weighted Binary Cross-Entropy (an
alternative of Binary Cross-Entropy) which will be later explained in section 4.2.11.

Final Capstone Project 22 of 58

4.2. Method:

As mentioned in the previous section 4.1.2 Constant Q Transform (CQT) is used for audio
feature extraction. Due to time constraints, this project will focus on one main type of
Networks: Long Short-Term Memory (LSTM), and several mechanisms: Bidirectional,
A�ention, Multihead A�ention.

4.2.1. Constant Q Transform:

The Constant Q Transform (CQT) [21] is a technique that transforms a time-domain signal into
the time-frequency domain so that the center frequencies of the frequency bins are
geometrically spaced and their Q-factors are all equal. CQT is closely related to the Discrete
Fourier Transform (DFT), but with output bins spaced logarithmically in frequency, rather
than linearly. A standard DFT uses a constant window size throughout all frequencies. This
typically leads to a pre�y consistent, fully continuous transformation. However, the constant
bin size for all frequencies leads to some problems when you map frequency on a logarithmic
scale. Specifically, peaks on the lower end are incredibly wide (sometimes up to half an
octave), lacking any sort of detail.

CQT solves this problem by increasing the window size for lower frequencies, and alleviating
some of the computational strain caused by this by reducing the window size used for high
frequencies. CQT is defined by:

𝑋 𝑘[] = 1
𝑁 𝑘[]

𝑛=0

𝑁 𝐾[]−1

∑ 𝑊 𝑘, 𝑛[]𝑥 𝑛[]𝑒
−𝑗2π𝑄𝑛

𝑁 𝑘[]

Figure 5. CQT Spectrum

Final Capstone Project 23 of 58

4.2.2. Long Short-Term Memory:

Humans don’t start their thinking from scratch every second. When reading an essay, one
person understands each word based on their understanding of previous words. We don’t
throw everything away and start thinking from scratch again. Our thoughts have persistence.
Recurrent Neural Networks (RNN) [27] have been widely applied to speech recognition and
handwriting recognition due to their capability to deal with sequential data. All recurrent
neural networks have the form of a chain of repeating modules of neural networks. In
standard RNN, this repeating module will have a very simple structure, such as a single tanh
layer.

Figure 6. RNN Cell, image from
“h�ps://colah.github.io/posts/2015-08-Understanding-LSTMs/”

However, since only one past unit is included in the frame of RNN, vanishing gradients
during backpropagation become the major problem.

Final Capstone Project 24 of 58

Figure 7. Vanishing Gradient, image from
“h�ps://www.kdnuggets.com/2022/02/vanishing-gradient-problem.html”

One possible solution is a special kind of Recurrent Neural Network (RNN) called Long
Short-Term Memory Networks (LSTM) [26]. Unlike traditional RNN that struggle to capture
long-term dependencies due to the vanishing gradients problem, LSTM possesses a unique
architecture specifically designed to overcome this limitation. LSTM architecture incorporates
several key components:

● Cell State: LSTM introduces the cell state, which acts as a kind of internal memory.
Unlike in RNN, the cell state represents the memory of the network, storing information
over time, while the hidden state contains the information that is passed to the next
time step. Allowing the network to learn long-range dependencies within sequences.

● Gates: LSTM utilizes specialized gates that regulate the flow of information within the
network. These gates, namely the forget gate, input gate, and output gate, control what
information is retained from the cell state, what new information is added, and what
information is exposed to the next layer in the network. This gating mechanism enables
LSTM to selectively remember and process relevant information over longer sequences.

By combining the cell state and gating mechanisms, LSTM effectively overcomes the vanishing
gradient problem that plagues traditional RNN. This allows them to learn complex

Final Capstone Project 25 of 58

relationships between elements even if they are separated by significant distances within a
sequence. This makes LSTM highly effective for various tasks that involve sequential data.

Figure 8. LSTM Cell, image from
“h�ps://colah.github.io/posts/2015-08-Understanding-LSTMs/”

The first step in our LSTM is to decide what information we’re going to throw away from the
cell state. This decision is made by a sigmoid layer called the “forget gate layer”. It looks at

and , and outputs a number between 0 and 1 for each number in the cell state . A 1ℎ
𝑡−1

𝑥
𝑡

𝑐
𝑡−1

represents “completely keep this” while a 0 represents “completely get rid of this”.

Figure 9. Forget Gate, image from
“h�ps://colah.github.io/posts/2015-08-Understanding-LSTMs/”

The next step is to decide what new information we’re going to store in the cell state. This has
two parts. First, a sigmoid layer called the “input gate layer” decides which values we’ll
update. Next, a tanh layer creates a vector of new candidate values, , that could be added to𝐶

𝑡

the state. In the next step, we’ll combine these two to create an update to the state.

Final Capstone Project 26 of 58

Figure 10. Input Gate, image from
“h�ps://colah.github.io/posts/2015-08-Understanding-LSTMs/”

It’s now time to update the old cell state, , into the new cell state . The previous steps𝑐
𝑡−1

𝑐
𝑡

already decided what to do, we just need to do it. Multiplying the old state by , forge�ing the𝑓
𝑡

things we decided to forget earlier. Then we add . These are the new candidate values,𝑖
𝑡

* 𝐶
𝑡

scaled by how much we decided to update each state value.

Figure 11. Cell State, image from
“h�ps://colah.github.io/posts/2015-08-Understanding-LSTMs/”

Finally, we need to decide what we’re going to output. This output will be based on our cell
state, but will be a filtered version. First, we run a sigmoid layer which decides what parts of
the cell state we’re going to output. Then, we put the cell state through tanh (to push the values
to be between -1 and 1) and multiply it by the output of the sigmoid gate, so that we only
output the parts we decided to.

Final Capstone Project 27 of 58

Figure 12. Output, image from “h�ps://colah.github.io/posts/2015-08-Understanding-LSTMs/”

4.2.3. Bidirectional Long Short-Term Memory:

Bidirectional Long Short-Term Memory (BiLSTM) is a term used for a sequence model that
contains two LSTM layers, one for processing input in the forward direction and the other for
processing in the backward direction. BiLSTM effectively increases the amount of information
available to the network, improving the context available to the algorithm (e.g. knowing what
words immediately follow and precede a word in a sentence). It is usually used in NLP-related
tasks. The intuition behind this approach is that by processing data in both directions, the
model is able to be�er understand the relationship between sequences.

Figure 13. Bidirectional Long Short-Term Memory, image from
“h�ps://www.baeldung.com/cs/bidirectional-vs-unidirectional-lstm”

The architecture of bidirectional LSTM comprises two unidirectional LSTM which process the
sequence in both forward and backward directions. This architecture can be interpreted as
having two separate LSTM networks, one gets the sequence of tokens as it is while the other

Final Capstone Project 28 of 58

gets in the reverse order. Both of these LSTM networks return a probability vector as output
and the final output is the combination of both of these probabilities. It can be represented as:

𝑝
𝑡

= 𝑝
𝑡
𝑓 + 𝑝

𝑡
𝑏

where:
● : Final probability vector of the network𝑝

𝑡

● : Forward probability vector of the network𝑝
𝑡
𝑓

● : Backward probability vector of the network𝑝
𝑡
𝑏

In essence, BiLSTM, by processing information bidirectionally, unlocked a deeper
understanding of context within sequences, leading to superior performance in various
sequential tasks.

4.2.4. A�ention Mechanism:

The introduction of A�ention Mechanism in deep learning has brought significant efficiency to
many models; it has been and continues to be an indispensable component in the most
advanced models.
The A�ention mechanism, introduced by Bahdanau et al. in 2014, addressed the weaknesses of
the use of a fixed-length encoding vector, which limited the decoder's ability to access
information within the input. This problem becomes particularly severe for long and/or
complex sequences, where the information gets compressed into the same size representation
as shorter or simpler ones, potentially losing important details.

The a�ention network was designed to identify the highest correlations among words within a
sentence. This correlation is captured in neuronal weights through backpropagation, either
from self-supervised pre-training or supervised fine-tuning. A�ention network allows the
calculation of the hidden representation of a token equal access to any part of a sentence
directly, rather than only through the previous hidden state.

The A�ention mechanism of "NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING
TO ALIGN AND TRANSLATE" [20] is illustrated in Figure 14 below.

Final Capstone Project 29 of 58

Figure 14. A�ention Mechanism, image from [20]

Alignment scores: The alignment model takes the encoded hidden states, , and the previousℎ
𝑖

decoder output, , to compute a score, , that indicates how well the elements of the input𝑠
1−𝑡

𝑒
𝑡,𝑖

sequence align with the current output at the position, t. The alignment model is represented
by a function, a(.), which can be implemented by a feedforward neural network:

𝑒
𝑡,𝑖

= 𝑎(𝑠
1−𝑡

, ℎ
𝑖
)

Weights: The weights, , are computed by applying a softmax operation to the previously𝑎
𝑡,𝑖

computed alignment scores:

𝑎
𝑡

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒
𝑡,𝑖

)

Context vector: A unique context vector, , is fed into the decoder at each time step. It is𝑐
𝑖

computed by a weighted sum of all, T, encoder hidden states:

Final Capstone Project 30 of 58

𝑐
𝑖

=
𝑗=1

𝑇

∑ 𝑎
𝑡,𝑖

ℎ
𝑖

4.2.5. Modified A�ention Mechanism:

Based on Bahdanau et al. A�ention mechanism [20], our team did several modifications as
follows:
Alignment scores: Same as Bahdanau et al., the alignment model is represented by a function,
a(.), which can be implemented by a feedforward neural network. Add a bias factor and put𝑏

𝑖

it all in a tanh function:

𝑒
𝑡,𝑖

= 𝑡𝑎𝑛ℎ(𝑎(𝑠
1−𝑡

, ℎ
𝑖
) + 𝑏

𝑖
)

Weights: The weights, , are computed by applying a softmax operation to the previously𝑎
𝑡,𝑖

computed alignment scores:

𝑎
𝑡

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒
𝑡,𝑖

)

Context vector: A unique context vector, , is fed into the decoder at each time step. It is𝑐
𝑖

computed by multiplying the weight with encoder hidden states:𝑎
𝑡,𝑖

𝑐
𝑖

= 𝑎
𝑡,𝑖

ℎ
𝑖

4.2.6. Multihead A�ention:

Multihead A�ention, introduced in [23], is a module for a�ention mechanisms that runs
through an a�ention mechanism multiple times in parallel. Each of these is called an A�ention
Head. This particular a�ention is called "Scaled Dot-Product A�ention"[23].

Final Capstone Project 31 of 58

Figure 15. Scaled Dot-Product A�ention, image from [23]

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇

𝑑
𝑘

)𝑉

where is the dimension of queries (Q) and keys (K).𝑑
𝑘

To make the Scaled Dot-Product A�ention "Multihead", the queries, keys, and values are
linearly projected h times with different, learned linear projections to , and dimensions,𝑑

𝑘
𝑑

𝑘
𝑑

𝑣

respectively. Next, perform the a�ention function in parallel on each of these projected queries,
keys and values, yielding - dimensional output values. These independent a�ention outputs𝑑

𝑣

are then concatenated and once again projected, resulting in the final values.

Final Capstone Project 32 of 58

Figure 16.Multihead A�ention, image from [23]

𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑
1
. ℎ𝑒𝑎𝑑

2
,..., ℎ𝑒𝑎𝑑

𝑘
)𝑊𝑜

where =ℎ𝑒𝑎𝑑
𝑖

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊
𝑖
𝑄, 𝐾𝑊

𝑖
𝑘, 𝑉𝑊

𝑖
𝑉)

Where the projections are parameter matrices , ,𝑊
𝑖
𝑄 ∈ 𝑅

𝑑
𝑚𝑜𝑑𝑒𝑙

×𝑑
𝑘 𝑊

𝑖
𝐾 ∈ 𝑅

𝑑
𝑚𝑜𝑑𝑒𝑙

×𝑑
𝑘 𝑊

𝑖
𝑄 ∈ 𝑅

𝑑
𝑚𝑜𝑑𝑒𝑙

×𝑑
𝑣

and .𝑊𝑂 ∈ 𝑅
𝑑

𝑣
×𝑑

𝑚𝑜𝑑𝑒𝑙

Final Capstone Project 33 of 58

4.2.7. Modified Multihead A�ention:

Based on Multihead A�ention mechanism [23], our team did several modifications as follows:

Instead of Scaled Dot-Product A�ention, we using our modified a�ention mechanism
explained in section 4.2.5:

𝑒
𝑡,𝑖

= 𝑡𝑎𝑛ℎ(𝑎(𝑠
1−𝑡

, ℎ
𝑖
) + 𝑏

𝑖
)

Inorder to make the A�ention “Multihead”, a�ention head and then projected. Next, insteadℎ
of concatenating the “heads” like in the normal Multihead A�ention, a summation is
performed:

𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑒
𝑡,𝑖

) = 𝑆𝑢𝑚(ℎ𝑒𝑎𝑑
1
. ℎ𝑒𝑎𝑑

2
,..., ℎ𝑒𝑎𝑑

𝑘
)𝑊𝑜

Add bias and put the whole process in a tanh function:

𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑒
𝑡,𝑖

) = 𝑡𝑎𝑛ℎ(𝑆𝑢𝑚(ℎ𝑒𝑎𝑑
1
,..., ℎ𝑒𝑎𝑑

𝑘
)𝑊𝑜 + 𝑏

𝑖
𝑜)

The weights, , are computed by applying a softmax operation to the previously computed𝑎
𝑡

alignment scores:

=𝑎
𝑡

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑒
𝑡,𝑖

))

Finally, the context vector is calculated by by multiplying the weight with the encoder𝑐
𝑖

𝑎
𝑡,𝑖

hidden states :ℎ
𝑖

𝑐
𝑖

= 𝑎
𝑡,𝑖

ℎ
𝑖

Final Capstone Project 34 of 58

Figure 17.Modified Multihead A�ention

Final Capstone Project 35 of 58

4.2.8. Tanh Activation:

A tanh activation function is a hyperbolic tangent activation function. It transforms the
continuous real input values into a range of (-1,1). Tanh function is defined by:

𝑓(𝑥) = 1 − 𝑒−2𝑥

1 + 𝑒−2𝑥

Figure 18. Tanh Function, image from
“h�ps://vidyasheela.com/post/hyperbolic-tangent-tanh-activation-function-with-python-code”

4.2.9. Sigmoid Activation:

A sigmoid function is a bounded, differentiable, real function that is defined for all real input
values and has a non-negative derivative at each point. It transforms the continuous real input
values into a range of (0,1). Sigmoid functions are defined by:

Final Capstone Project 36 of 58

Figure 19. Sigmoid Function, image from “h�ps://en.wikipedia.org/wiki/Sigmoid_function”

σ(𝑥) = 1

1 + 𝑒−𝑥

4.2.10. Binary Cross-Entropy:

Binary Cross Entropy (BCE) is a loss function that’s normally used for Binary classification
problems. These problems answer questions with only 2 choices (yes or no, A or B, 0 or 1, left
or right) for example the problem of classifying dogs and cats or classifying people and horses.
While BCE is ideal for these simple choices, it can also be applied to situations where an image
can have multiple labels at the same time.

𝐵𝐶𝐸 = − 1
𝑁

𝑖=1

𝑁

∑ 𝑦
𝑖

· 𝑙𝑜𝑔(𝑝(𝑦
𝑖
)) + (1 − 𝑦

𝑖
) · 𝑙𝑜𝑔(1 − 𝑝(𝑦

𝑖
))

where is the label and is the predicted probability of class 1 for all N points.𝑦
𝑖

𝑝(𝑦
𝑖
)

Final Capstone Project 37 of 58

4.2.11. Weighted Binary Cross-Entropy:

Weighted Binary Cross-Entropy (WBCE) applies a scaling parameter to Binary Cross Entropy,
allowing us to penalize false positives or false negatives more harshly. It is also effective in
handling imbalanced datasets by assigning higher penalties for misclassifying the minority
class. WBCE is defined by:

𝑊𝐵𝐶𝐸 = − 𝐸[𝑤
1

· 𝑦
𝑖

· 𝑙𝑜𝑔(𝑝(𝑦
𝑖
)) + 𝑤

0
· (1 − 𝑦

𝑖
) · 𝑙𝑜𝑔(1 − 𝑝(𝑦

𝑖
))]

where is the label and is the predicted probability of class 1 for all N points, and𝑦
𝑖

𝑝(𝑦
𝑖
) 𝑤

1
𝑤

0
is the weight parameters of the class 1 and 0 respectively.

4.2.12. Early Stopping:

After every epoch, the validation set was evaluated in order to stop the training if the
evaluation of valid loss did not improve for more than ten (10) epochs, avoiding possible
over-fi�ing, as the validation set was composed of unseen songs.

4.2.13. F1-score:

The metrics used to evaluate the accuracy of the Automatic Music Transcription model is the
Precision, Recall and F1-score. Precision shows how often an ML model is correct when
predicting the target class. Recall shows whether an ML model can find all objects of the target
class. F1-score shows the harmonic mean of the Precision and Recall of a classification ML
model. The method to calculate those metrics are shown as below:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Final Capstone Project 38 of 58

where TP, FP, FN stand for True Positive - number of positive samples which are correctly
predicted (over all samples), False Positive - number of negative samples incorrectly predicted,
and False Negative - number of positive samples incorrectly predicted, respectively. This
measure is bounded by 0 and 1, with 1 corresponding to the correct transcription.

4.2.14. Post-processing

Post-processing could be done using complex but really effective techniques such as using an
adaptive threshold during training to maximize the accuracy (instead of simply rounding the
predictions) or training HMM models. However, in order to adapt to the time and job
allocation constraints of this project, a simple post-processing was designed. The main idea
was to erase the predicted pitches which duration was too short to be considered as a pitch
and fill small gaps between pitches.

All the mentioned methods will be used for the experiment to find the best method to suit the
purpose of this project, except A�ention (section 4.2.4) and Multihead A�ention (section 4.2.6)
are the base methods to be modified, the post-processing method (4.2.14) is not completed, it
will not take account in calculating accuracy and will only be used when predicting.

Final Capstone Project 39 of 58

5. EXPERIMENTS

5.1. Base model Long Short-Term Memory

In [17], two different deep learning model structures DNN and LSTM are compared. DNN and
LSTM were used, with 1,2,3, and 4 hidden layers respectively. All of them had 256 units in
each hidden layer. The project [17] has proved the performance of DNN over LSTM and the
suitable number of hidden layers is 3. Unsatisfied with the result, LSTM is our base model.

However, originally, in [17], Mean Squared Error (MSE) between the output and the labels
vector for each frame was set as the loss function, all the hidden layers used tanh activation
and the output layer’s activation was set as ReLU as both the target output.

Through research, our team first determined that using ReLU activation in the last output
layer and MSE as a loss function is not the optimal choice for the current Multilabel-
Classification tasks. Given the limitations of ReLU for multi-label classification, we opted to
employ a Sigmoid activation function in the final output layer. Sigmoid functions are
well-suited for this task because they output values between 0 and 1, which can be interpreted
as probabilities for each class.

MSE is used to check how close estimates or forecasts are to actual values. The lower the MSE,
the closer it forecasts to the actual. Since MSE is primarily concerned with minimizing the
squared difference between a single predicted value and the actual value, in multi-label
classification, however, multiple labels can be true simultaneously. MSE may struggle to
capture the overall error associated with each individual class. As a consequence, Binary
Cross-Entropy (BCE) takes place. However, in this case, we used the Weighted Binary
Cross-Entropy (WBCE) described in section 4.2.11.

Our modification for the model was to replace the ReLU activation layer with Sigmoid and
MSE with BCE. Each of the LSTM layers had 256 hidden units and tanh activation function.
Dropout rate was set to 20% (0.2), early stopping was done using the accuracy on the
validation set in order to avoid possible over-fi�ing. Adam optimizer was used with a default
learning rate of 0.001. Loss function is WBCE described in section 4.2.11, with 1 to 0 ratio 0.65,
0.35.

Final Capstone Project 40 of 58

Figure 20. Base Model & Modified Base Model

5.2. Bidirectional Long Short-Term Memory

While Long Short-Term Memory (LSTM) networks excel at capturing sequential information,
Bidirectional LSTM (BiLSTM) offers a distinct advantage in sequential tasks. Different from it’s
unidirectional counterparts - LSTM, which analyzes sequences in one direction (typically
forward), BiLSTM processes the music information in both forward and backward directions.
This capability allows BiLSTM to leverage contextual information from both the preceding and
succeeding notes within a musical sequence. This is particularly beneficial in AMT because
musical meaning often depends on the interplay between notes in both directions. For
example, a resolving chord at the end of a phrase can influence the interpretation of earlier
notes in the sequence. By considering the entire musical context, BiLSTM can achieve superior
performance in tasks like pitch and onset detection, chord recognition, and overall music
transcription accuracy compared to traditional LSTM.Aware of its characteristics, our team
conducted an experiment to test the performance of BiLSTM and compare it with normal
unidirectional LSTM. With the same model architecture as normal LSTM: 3 BiLSTM hidden

Final Capstone Project 41 of 58

layers along with 3 Dropout layers after each BiLSTM layer, 1 Sigmoid activation function in
the final output layer. The model structure is described in Figure 21 below.

Figure 21. Bidirectional Long Short-Term Memory Model

All of the LSTM layers had 256 units in each hidden layer, which means there are 512 units in
each BiLSTM layer with tanh activation function. Dropout rate was set to 20% (0.2), early
stopping was done using the accuracy on the validation set in order to avoid possible
over-fi�ing. Adam optimizer was used with a default learning rate of 0.001. Loss function is
WBCE described in section 4.2.11, with 1 to 0 ratio 0.65, 0.35.

5.3. Long Short-Term Memory - A�ention

A�ention mechanisms enhance deep learning models by selectively focusing on important
input elements, improving prediction accuracy and computational efficiency. They prioritize
and emphasize relevant information, acting as a spotlight to enhance overall model
performance. Moreover, A�ention-based architectures currently lay at the basis of
state-of-the-art NLP models. As a consequence, our team decided to run an experiment on
applying A�ention mechanism to our model.
Upon testing with the General A�ention (Scaled Dot-Product A�ention) [23], our team
recognised that such A�ention’s mechanism is not suitable for our model. Through research,

Final Capstone Project 42 of 58

our team has applied and modified the A�ention mechanism of [20] to best suit our current
model. The modified A�ention mechanism that we are using is explained in section 5.5.
Also inspired by the paper [20], which stacked A�ention between 2 Recurrent Neural
Networks, by replacing RNN with LSTM, our model structure is illustrated in Figure 22.

Figure 22. Long Short-Term Memory - A�ention Model

All of the LSTM layers had 256 units in each hidden layer with tanh activation function.
A�ention mechanism was explained in section 4.2.5. Dropout rate was set to 20% (0.2), and
early stopping was done using the accuracy on the validation set in order to avoid possible
over-fi�ing. Adam optimizer was used with a default learning rate of 0.001. Loss function is
WBCE described in section 4.2.11, with 1 to 0 ratio 0.65, 0.35.

Final Capstone Project 43 of 58

5.4. Bidirectional Long Short-Term Memory - A�ention

Just like in section 5.2, by replacing the LSTM layers with BiLSTM, we conducted an
experiment to test the performance of BiLSTM as well as to see whether our A�ention
mechanism interacts with Bidirectional objects. The model structure is illustrated in Figure 23
below.

Figure 23. Bidirectional Long Short-Term Memory - A�ention Model

All of the LSTM layer had 256 units in each hidden layer, which means there are 512 units in
each BiLSTM layer with tanh activation function. A�ention mechanism was explained in 4.2.5.
Dropout rate was set to 20% (0.2), early stopping was done using the accuracy on the
validation set in order to avoid possible over-fi�ing. Adam optimizer was used with a default
learning rate of 0.001. Loss function is WBCE described in section 4.2.11, with 1 to 0 ratio 0.65,
0.35.

Final Capstone Project 44 of 58

5.5. A�ention - Long Short-Term Memory

A Transformer is a model architecture that eschews recurrence and instead leverages an
a�ention mechanism to capture global dependencies within the input sequence. While classic
sequence-to-sequence models often utilize encoders and decoders built with RNN or CNN, the
Transformer retains this encoder-decoder structure but replaces recurrent connections with
a�ention mechanisms, enabling significant efficiency gains. This approach allows for
significantly more parallelization during training compared to recurrent or convolutional
methods.

Figure 24. Transformer architecture, image from [23]

Final Capstone Project 45 of 58

Throughout the last few years, the interest in Transformers has grown considerably and so
does the number of papers focused on its possible application. The Transformer model has
revolutionized the field of natural language processing (NLP) by introducing a novel
architecture that relies solely on a�ention mechanisms. This approach has demonstrated
exceptional performance in various tasks, including machine translation and text
summarization. Motivated by the success of the Transformer architecture in various sequence
processing tasks, we modified our previous LSTM-A�ention-LSTM model. The key
modification is switching the A�ention layer to the beginning of the network. This placement
allows the model to a�end to critical information earlier in the processing sequence,
potentially leading to enhanced performance. Moreover, a DNN layer was added before the
Sigmoid function as projected to the Linear layer of the Transformer. The model's structure is
illustrated in Figure 25 below.

Figure 25. A�ention - Long Short-Term Memory Model

All of the LSTM layers had 256 units in each hidden layer. Tanh activation function was used
in the LSTM and DNN layers. A�ention mechanism was explained in section 4.2.5. Dropout
rate was set to 20% (0.2), early stopping was done using the accuracy on the validation set in
order to avoid possible over-fi�ing. Adam optimizer was used with a default learning rate of
0.001. Loss function is WBCE described in section 4.2.11, with 1 to 0 ratio 0.65, 0.35.

Final Capstone Project 46 of 58

5.6. A�ention - Bidirectional Long Short-Term Memory

After the success of the previous Transformer-inspired A�ention-LSTM model in experiment
5.5, as a consequence in experiment 5.4, our team conducted a test on clarifying the
performance of BiLSTM over LSTM. With the same model's structure, by replacing the 3 LSTM
layers with BiLSTM, our team expected the A�ention - BiLSTM model to outperform the
LSTM's version. The model's structure is illustrated in Figure 26 below.

Figure 26. A�ention - Bidirectional Long Short-Term Memory Model

All of the LSTM layers had 256 units in each hidden layer, which means there are 512 units in
each BiLSTM layer. Tanh activation function was used in the LSTM and DNN layers. A�ention
mechanism was explained in section 4.2.5. Dropout rate was set to 20% (0.2), early stopping
was done using the accuracy on the validation set in order to avoid possible over-fi�ing. Adam
optimizer was used with a default learning rate of 0.001. Loss function is WBCE described in
section 4.2.11, with 1 to 0 ratio 0.65, 0.35.

Final Capstone Project 47 of 58

5.7. Multihead A�ention - Bidirectional Long Short-

Term Memory

In Transformer architecture, there are 3 A�ention blocks. Multiple a�empts were made to add
several A�ention to the model. However, it seems like this approach is not suitable for our
current model. Our team decided to innovate our modified A�ention mechanism to make it
“Multihead”. The configuration is described in section 4.2.7. Model’s structure is illustrated in
Figure 27 below.

Figure 27.Multihead A�ention - Bidirectional Long Short-Term Memory Model

All of the LSTM layers had 256 units in each hidden layer, which means there are 512 units in
each BiLSTM layer. Tanh activation function was used in the LSTM and DNN layers.
Multihead A�ention mechanism was explained in section 4.2.7, in this model, 3 heads were
used. Dropout rate was set to 20% (0.2), early stopping was done using the accuracy on the
validation set in order to avoid possible over-fi�ing. Adam optimizer was used with a default
learning rate of 0.001. Loss function is WBCE described in section 4.2.11, with 1 to 0 ratio 0.65,
0.35.

Final Capstone Project 48 of 58

6. RESULTS

Table 5. Result Table

Model Parameters Precision Recall Accuracy F1-score

LSTM (Base Model) 1.59M 0.76 0.66 55.2 71.2

Bidirectional LSTM 4.24M 0.77 0.74 61.2 75.98

LSTM - A�ention -

LSTM

1.66M 0.74 0.75 59.8 74.8

Bidirectional LSTM -

A�ention -

4.35M 0.8 0.83 69.5 82

A�ention - LSTM 1.66M 0.80 0.84 69.8 82.2

A�ention -

Bidirectional LSTM

4.35M 0.84 0.88 75.5 86.1

Final Capstone Project 49 of 58

Multihead -

Bidirectional LSTM

4.43M 0.84 0.9 77.3 87.2

Multihead -

Bidirectional LSTM +

Binary Cross

Entropy (Best Model)

4.43M 0.89 0.86 78.9 88.2

Multihead -

Bidirectional LSTM +

Single Dataset

4.43M 0.83 0.87 74.5 85.4

Multihead-Bidirectional LSTM model stands out to be the most efficient model and will be

used to demonstrate prediction ability, comparative when the model is used with BCE and

WBCE are shown in section 6.1, when model trains with single and multiple dataset are

shown in section 6.2.

Final Capstone Project 50 of 58

Base Model Loss and Accuracy in train

Best Model Loss and Accuracy in train

Figure 28. Loss and Accuracy in train of Base Model and Best Model

Final Capstone Project 51 of 58

Predicted result of Base Model

Predicted result of Best Model

Ground truth value

Figure 29. Predicted result of Base Model, Best Model vs Ground Truth value

Final Capstone Project 52 of 58

EXTRA

6.1. Weighted Binary Cross-entropy

Predicted result of Multihead model when use WBCE

Predicted result of Multihead model when use BCE

Ground truth value

Figure 30. Predicted result of Multihead A�ention - BiLSTM when use WBCE and BCE vs
Ground Truth value

Final Capstone Project 53 of 58

6.2. Multihead A�ention - Bidirectional Long Short- Term

Memory with MAPS only

Predicted result of Multihead model when use Multiple dataset

Prediction Ability of Multihead model when use Single dataset

Ground truth value

Figure 31. Predicted result of Multihead A�ention - BiLSTM when use Multiple dataset and
Single dataset vs Ground Truth value

Final Capstone Project 54 of 58

7. DISCUSSION

Our capstone project explored the capability of a deep learning approach for Automatic Music
Transcription. By trea�ing music audio as sequential data, we apply a deep learning method:
LSTM for automatic music transcription. In general, the prediction accuracy is promising,
given that our neural network is not very deep (~4M parameter) compared to recent
approaches. Analyzing its performance, we found that LSTM has an overfi�ing issue in our
tested case. By changing the dropout rates, we can overcome the overfi�ing issue.

However, due to handling music audio as sequential data, our proposed model adopted
several limitations.

7.1. Limitation

7.1.1. Polyphony

In music, multiple sounds (e.g., instruments, vocals) are played simultaneously (in our case,
multiple notes are played at the same time). Unlike in Nature Language Processing (NLP)
where words occur one after another. LSTM struggles to capture these concurrent notes
relationships effectively.

7.1.2. Tremolo

The repetition of a single note, as fast as possible, is called tremolo. It is a music performance
technique in which a performer plays an individual note or two alternating notes as fast as
possible. However, when notes are played very close together in time, their frequencies can
overlap in the audio spectrum. This creates difficulty for the AMT system to isolate the
fundamental frequency of each note and distinguish between a single sustained note and the
rapid tremolo.

Final Capstone Project 55 of 58

7.1.3. Up-Tempo

Tempo in music, means how fast the music is played, and Up-Tempo is a piece of music which
plays fast or very fast, our model has a low accuracy when predicting such music pieces.

7.1.4. Post-processing

As previously mentioned in section 4.2.14, our current method of post-processing works by
erasing the predicted pitches which were too short and filling small (1-2 frame) gaps between
pitches.

7.2. Future work

To further increase the accuracy of our music transcription, the neural networks could be
trained on a larger dataset, including isolated notes, chords and monophonic pieces of music
other than polyphonic pieces of music. Improving post-processing mechanisms could be a
promising solution. Moreover, using an adaptive threshold during training to maximize the
accuracy instead of simply rounding the prediction. Another way is to create a “deeper”
model which indicates more information rather than just which notes are played in a frame.

Final Capstone Project 56 of 58

8. CONCLUSIONS

This project explored the potential of deep learning for Automatic Music Transcription (AMT).

The Deep Learning model, particularly the Multihead A�ention BiLSTM model, achieved

promising results in transcribing piano music. Compared to the base-line model LSTM, our

models demonstrated improved accuracy in capturing notes and musical structures. Overall,

Deep Learning shows a significant promising approach for AMT. By addressing the current

challenges and exploring new avenues of research, AMT technology can continue to evolve

and offer valuable tools for musicians, composers, music educators, and anyone passionate

about music analysis and creation.

CONFLICTS OF INTEREST:

All authors declare no conflicts of interest.

Final Capstone Project 57 of 58

9. REFERENCES

1. J.A. Moorer. On the Segmentation and Analysis of Continuous Musical Sound by Digital Computer. PhD
thesis, On the Segmentation and Analysis of Continuous Musical Sound by Digital Computer, 1975.

2. J.A. Moorer. On the transcription of musical sound by computer. Computer Music Journal, 2(1):7–11, 1977.
3. Masakata Goto and Yoichi Muraoka. A beat tracking system for acoustic signals of music. ACM International

Conference on Multimedia, pages 365–372, 1994.
4. Anssi Klapurri, “Introduction to music transcription. Technical report, Institute of Signal Processing,

Tampere University of Technology”, Korkeakoulunkatu 1, 33720 Tampere, Finland, 2006.
5. V. Emiya, R. Badeau, and B. David, “Multipitch estimation of piano sounds using a new probabilistic spectral

smoothness principle,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, no. 6, pp.
1643–1654, 2010.

6. L. Su and Y.-H. Yang, “Combining spectral and temporal representations for multipitch estimation of
polyphonic music,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 23, no. 10, pp.
1600– 1612, Oct 2015

7. Z. Duan, B. Pardo, and C. Zhang, “Multiple fundamental frequency estimation by modeling spectral peaks
and non-peak regions,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, no. 8, pp.
2121–2133, 2010.

8. P. H. Peeling, A. T. Cemgil, and S. J. Godsill, “Generative spectrogram factorization models for polyphonic
piano transcription,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, no. 3, pp.
519–527, March 2010.

9. P. Smaragdis and J. C. Brown, “Non-negative matrix factorization for polyphonic music transcription,” in
Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2003, pp. 177–180.

10. E. Vincent, N. Bertin, and R. Badeau, “Adaptive harmonic spectral decomposition for multiple pitch
estimation,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, no. 3, pp. 528–537, 2010.

11. E. Benetos and S. Dixon, “Multiple-instrument polyphonic music transcription using a
temporally-constrained shift-invariant model,” Journal of the Acoustical Society of America, vol. 133, no. 3,
pp. 1727–1741, March 2013.

12. B. Fuentes, R. Badeau, and G. Richard, “Harmonic adaptive latent component analysis of audio and
application to music transcription,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 21,
no. 9, pp. 1854–1866, Sept 2013.

13. S. Sigtia, E. Benetos, and S. Dixon, “An end-to-end neural network for polyphonic piano music
transcription,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 24, no. 5, pp.
927–939, May 2016.

14. R. Kelz, M. Dorfer, F. Korzeniowski, S. Böck, A. Arzt, and G. Widmer, “On the potential of simple framewise
approaches to piano transcription,” in Proc. International Society for Music Information Retrieval
Conference, 2016, pp. 475–481.

15. K. Ullrich and E. van der Wel, “Music transcription with convolutional sequence-to-sequence models,”
International Society for Music Information Retrieval, 2017.

16. G. E. Poliner and D. P. Ellis, “A discriminative model for polyphonic piano transcription,” EURASIP Journal
on Applied Signal Processing, vol. 2007, no. 1, pp. 154, 2007.

17. Diego González Morín, “Deep neural networks for piano music transcription,”, 2017. Available:
h�ps://github.com/diegomorin8/Deep-Neural-Networks-forPiano-Music-Transcription.

18. S. Sigtia, E. Benetos and S. Dixon, “An end-to-end neural network for polyphonic piano music transcription,”
IEEE/ACM Trans. Audio Speech Lang. Process., 24, 927–939, 2016. Available: h�ps://arxiv.org/abs/1508.01774.

https://github.com/diegomorin8/Deep-Neural-Networks-forPiano-Music-Transcription

Final Capstone Project 58 of 58

19. Luoqi Li, Isabella Ni, Liang Yang. “Music Transcription Using Deep Learning” [Stanford University], 2017.
Available:h�ps://cs229.stanford.edu/proj2017/final-reports/5242716.pdf?�clid=IwAR2mQj0kGGSnmCUGCIx
_rhChWoJgBiZKL�lUcdMhFnTZecXn4ZFBymz52A

20. D. Bahdanau, K. Cho, and Y. Bengio. “Neural machine translation by jointly learning to align and translate“.
In ICLR, 2015.

21. J.C. Brown, “Calculation of a constant Q spec-tral transform,” Journal of the Acoustical Society of America,
1991.

22. Benetos, Emmanouil, et al. "Automatic music transcription: An overview." IEEE Signal Processing Magazine
36.1 (2018): 20-30.

23. Vaswani, Ashish, et al. "A�ention is all you need." Advances in neural information processing systems 30,
2017.

24. MAPS Database: A Piano Database for Multipitch Estimation and Automatic Transcription of Music, 2010.
25. The MAESTRO Dataset, 2018
26. S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," in Neural Computation, vol. 9, no. 8, pp.

1735-1780, 15 Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.
27. David E. Rumelhart; James L. McClelland, "Learning Internal Representations by Error Propagation" in

Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations , MIT Press,
1987, pp.318-362.

https://cs229.stanford.edu/proj2017/final-reports/5242716.pdf?fbclid=IwAR2mQj0kGGSnmCUGCIx_rhChWoJgBiZKLtzlUcdMhFnTZecXn4ZFBymz52A
https://cs229.stanford.edu/proj2017/final-reports/5242716.pdf?fbclid=IwAR2mQj0kGGSnmCUGCIx_rhChWoJgBiZKLtzlUcdMhFnTZecXn4ZFBymz52A

