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ABSTRACT

Biological image analysis is crucial for advancements in fields like drug discovery and

biomedical research. Traditional methods, relying on manual feature extraction, are

laborious and prone to errors. While deep learning has revolutionized automated image

analysis, many challenges remain. These include the need for vast amounts of high-quality

labeled data for training, limited generalizability to unseen data, and the computational

complexity requiring expensive hardware. This project investigates the application of deep

learning for biological image analysis, focusing on overcoming these limitations in three

key areas: large image representation, accurate cell segmentation, and spatial image

analysis. By addressing these challenges, we aim to develop robust and accessible deep

learning tools that can significantly enhance biological image analysis, ultimately

accelerating research progress.

Keywords: bioinformatics; spatial; deep learning; spatial analysis; cell segmentation
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1. INTRODUCTION

The field of biological research is undergoing a data revolution. High-throughput

technologies, like next-generation sequencing and advanced microscopy, are churning out

massive datasets (often referred to as "big data") at an unprecedented rate. These datasets

hold immense potential to unlock new frontiers in our understanding of biological

processes, from understanding how each cell works to characterize the interaction of a

complex ecosystem. However, analyzing this vast amount of information presents

significant computational challenges. A major challenge is the scarcity of labeled data.

Unlike many other data analysis domains, where vast amounts of pre-labeled data may

exist (think image recognition with millions of pre-labeled cat pictures), biological data

often lacks this critical element. Identifying and meticulously categorizing the objects of

interest within these complex datasets requires the expertise of trained scientists – a

time-consuming and expensive process. This scarcity of labeled data severely limits the

applicability of traditional supervised learning techniques, which rely heavily on

pre-labeled data to train models for accurate analysis. Adding another layer of complexity

is the inherent nature of biological data itself. Biological systems are intricate, with

intricate spatial relationships between different molecules and diverse cell types existing

within a single image. Capturing these nuances and accurately analyzing such data

demands sophisticated computational approaches that can navigate the complexities of

biological organization.

First, we provide an overview of encoder-decoder architectures (Figure 1.1). This

powerful and versatile neural network architecture is designed for tasks involving

sequence-to-sequence learning. Imagine an encoder as a powerful compressor, taking a

complex input sequence and condensing it into a more compact representation that

captures its essential features. This compressed representation acts as a hidden code

summarizing the image's key elements while ignoring noise. The decoder then takes this

hidden code and expands it back into a new output sequence, aiming to reconstruct the

original input but with additional information or a different format.
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Figure 1.1. Encoder-decoder architectures.

However, standard encoders capture only complex features through downsampling.

U-net[1] addresses this by adding "skip connections" that act like information highways.

These connections bridge the gap between the encoder and decoder, allowing the decoder

to directly access the high-resolution details the encoder captured before compression. This

is crucial for precise segmentation tasks. U-net decoders can not only understand the big

picture but also meticulously recreate the fine details.

Spatial Biology: Traditional biology often studies molecules and processes in isolation.

However, a cell's behavior and function are heavily influenced by its location and

interaction with neighboring cells within a tissue. This is where spatial biology steps in.

It's a revolutionary field that investigates the distribution and organization of molecules

within tissues, providing a much more comprehensive understanding of biological systems.

Imagine zooming in on a tissue sample and not just seeing different cell types, but also

visualizing their precise locations and how they interact with each other through signaling

molecules or physical connections. This intricate spatial organization holds the key to

unlocking the secrets of development, disease progression, and fundamental biological

processes.
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A question is how we can analyze this complex spatial information. This is where cell

segmentation comes into play. It is an important technique to identify individual cells with

a tissue image. By accurately segmenting cells, scientists can quantify their properties,

analyze their gene expression patterns, and understand how they contribute to the overall

tissue function. Traditional segmentation methods often rely on image processing

techniques or readily available labeled datasets. However, creating these labeled datasets

can be time-consuming and expensive, especially in spatial biology where tissues are

intricate and cell types diverse.

While cell segmentation is crucial for identifying individual cells, its true power lies in

understanding how these cells interact. This is especially important for scientists studying

the interaction between tumors and immune cells, for diagnosis and choosing

immunotherapy treatment approaches. Therefore, spatial analysis becomes essential. By

adding spatial context to gene expression data, researchers can tackle problems beyond the

capabilities of traditional analysis, revealing how cells are positioned and interact within

the tissue, and providing a more comprehensive picture of disease processes.

In this project, we focus on a critical challenge hindering spatial biology research: the

scarcity of labeled data. While cell segmentation is vital for unraveling spatial information,

creating meticulously labeled datasets is a laborious and time-consuming process. This

bottleneck restricts research progress and limits the applicability of segmentation methods.

In this thesis, we developed a novel object segmentation model that combines the power of

unsupervised and supervised learning.
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2. RELATEDWORK

2.1. U-Net:

In the field of medical imaging, U-Net stands out as a cleverly designed convolutional

neural network (CNN) architecture. Introduced in 2015 by Olaf Ronneberger and

colleagues in their paper "U-Net: Convolutional Networks for Biomedical Image

Segmentation," this architecture specifically tackles the challenge of segmenting

biomedical images.

The power of the U-Net model lies in its clever two-pronged approach:

Figure 2.1. U-Net architecture.

● Encoder-decoder structure: U-Net follows a typical encoder-decoder architecture.

The encoder part captures essential features by progressively downsampling the

input image. The decoder part then up-samples the captured features and refines

them to produce a segmentation map with the same resolution as the input image.

● Skip connections: A key feature of U-Net is the use of skip connections. These

connections bridge the encoder and decoder paths, directly feeding spatial
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information from the contracting path to the expanding path. This helps the model

retain precise localization details and improves segmentation accuracy.

By combining these elements, U-Net effectively addresses the challenge of limited datasets

in medical image segmentation, making it a valuable tool for this field.

2.2. CellPose:

CellPose[2, 3], introduced in the paper "CellPose: A Versatile Trainable Method for Cell

Segmentation" by Annemijn Pannekamp et al. (2019), is a deep learning framework

designed specifically for cell segmentation in microscopy images. It joins a growing field

of related works that leverage deep learning for this task. CellPose offers a general-purpose

solution that can handle various cell types and staining methods, without the need for

extensive training on specific datasets.

Cellpose leverages the power of convolutional neural networks, specifically the U-Net

architecture, for cell segmentation. However, it introduces several modifications to

enhance efficiency and performance:

● Efficient Upsampling: Instead of the usual feature concatenation during upsampling

in U-Net, Cellpose employs direct summation. This reduces the number of

parameters in the model, making it more lightweight.

● Residual Power: Standard U-Net building blocks are replaced with residual blocks.

Renowned for improving performance in deep networks, these blocks allow

Cellpose to achieve better results. To further capitalize on this approach, the

network depth is also doubled, aligning with best practices for residual networks.

● Incorporating Image Style: CellPose integrates a global average pooling layer. This

layer captures the overall "style" of the image, summarizing its key characteristics.

This style information is then fed into later processing stages. The idea is that by

understanding the image's style, the network can potentially adapt its computations

to better analyze that specific image.
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Figure 2.2. Cellpose architecture.

Cellpose predicts three outputs (Figure 2.3):

● Flow Fields (X & Y): These indicate the direction (X and Y coordinates) in which

pixels should be grouped to form complete cell objects. The flow fields essentially

guide the model in constructing the final cell segmentation masks.

● Pixel Confidence: This represents the probability of a pixel belonging to a cell.

A B C

Figure 2.3. Three layers of output. (A) Horizontal gradient. (B) Vertical gradient. (C) Probability.
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All the 3 channels are used to construct the final cell segmentation masks:

● Thresholding the probability channel (channel 3) to identify likely cell pixels.

● Utilizing the gradient maps (channels 1 and 2) to iteratively refine the segmentation

based on the direction of intensity change. This approach is inspired by dynamic

systems, where each pixel iteratively updates its location based on the surrounding

gradient information (Figure 2.4).

● Constructing a final segmentation mask by grouping pixels based on their "stop

locations" obtained through the dynamic system loop.

Figure 2.4. Cellpose’s Post-processing: Using the flows to detect the cell center.
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3. PROJECT MANAGEMENT PLAN

Table 1. Project Plan

Task name Priority Owner Start date End date Status Issues

Literature review High All 01/01/2024 07/01/2024 Done

Analyze dataset Low All 08/01/2024 21/01/2024 Done
The TissueNet
dataset has wrong
labels.

Explore
Encoder-Decoder
based models

High All 22/01/2024 31/01/2024 Done

A native
encoder-decoder
model is
underperformance in
almost all cases.

Explore the
Cellpose model High All 01/02/2024 15/02/2024 Done

The Cellpose model
gives low
performance on
unseen datasets.

Improve the
Cellpose model Medium All 16/02/2024 01/04/2024 Done

Hard to improve
from the Cellpose
model - the
well-performing
model.

Writing report Medium All 15/03/2024 15/04/2024 Done

Benchmarking Medium Nhat 02/04/2024 15/04/2024 Done

Demonstration Low Nghia, Ha 02/04/2024 15/04/2024 Done
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Table 2.Datasets

Items Link Description

Data DeepCell Datasets
The second release of the TissueNet
dataset from Greenwald, Miller et al.

(Detailed in 4.2.1)

Data Data Release Program | Vizgen Vizgen public data release

https://datasets.deepcell.org/data
https://vizgen.com/data-release-program/
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4. MATERIALS AND METHODS

4.1. Large images presentation:

4.1.1. Large single-cell images:

In contemporary biological research, scientists need to unravel the fundamental biological

mechanisms of living organisms. Given that cells serve as the fundamental units of all

living organisms, it is only natural for researchers to place significant emphasis on

comprehending the internal workings of cells. Consequently, molecules responsible for

cellular functions have become a focal point of intensive study across nearly every field of

biology today. Moreover, the demand for observing and quantifying information at high

resolutions is exceedingly high.

High-resolution images captured through microscopy or other imaging techniques, often

referred to as spatial datasets, enable researchers to scrutinize individual cells in intricate

detail. Various technologies such as Merscope[5], Cosmx[6], Visium, and Xenium[7], etc.,

have been developed to generate diverse studies encompassing different types of

single-cell spatial data. Notably, Merscope and Cosmx stand out as technologies capable of

facilitating studies with exceptionally large single-cell images, reaching up to several

billion pixels and requiring several terabytes of storing all of them.

As a result, analyzing and fully utilizing these studies present considerable challenges, yet

human resources are insufficient to address all aspects. Consequently, artificial intelligence

(AI) emerges as a crucial tool for undertaking this demanding task.
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4.1.2. Storage and Accession:

With many advanced technologies, we have obtained diverse datasets encompassing

various spatial images. However, this has resulted in a significant volume of data in

multiple formats. Storing this data for easy access poses a major challenge, particularly

when dealing with large amounts of single-cell spatial images. Therefore, we have chosen

a unified format across all technologies to systematically store both the original data and

analysis results. This approach ensures seamless access and interaction with the data,

especially for crucial single-cell spatial images. This format is referred to as SpatialData[8].

4.1.2.1. Zarr structure:

Zarr is a chunked, compressed, N-dimensional array (Figure 4.1). It is particularly useful

for storing large datasets that don't fit into memory, as it allows for efficient access to

chunks of data on disk.
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Figure 4.1. Zarr structure.

An array is stored in binary files by dividing it into fixed-size chunks and saving them as separate groups of

files on the disk.

Zarr stores data in a hierarchical format, similar to a file system, where arrays are

organized into groups and subgroups. Each array is divided into fixed-size chunks, which

are stored as separate blocks on disk. This chunked storage allows for efficient reading and

writing of data, as only the necessary chunks need to be loaded into memory at any given

time.
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4.1.2.2. SpatialData format:

SpatialData is a framework that establishes a unified and extensible multi-platform file

format, lazy representation of larger-than-memory data, transformations, and alignment to

common coordinate systems. This format is represented using five primitive elements:

Images (raster images), Labels (e.g. raster segmentation masks), Points (e.g. molecular

probes), Shapes (e.g., polygon regions of interests, array capture locations, etc.), and

Tables (e.g., molecular quantifications and annotations) (Figure 4.2).

● Images: images are raster data that store high-resolution microscopy images. They

are stored as Zarr arrays (OME-NGFF[9]) and are represented in memory as

(multiscale) SpatialImage.

● Labels: labels are raster data that contain regions of interest such as segmentation

masks. They are stored similarly to images as Zarr arrays (OME-NGFF[9]) on disk

and represented in memory as (multiscale) SpatialImage.

● Shapes: shapes are polygon data that contain regions of interest such as cell

segmentations, capture locations of array-based spatial transcriptomics data, or

other types of ROIs. They are stored as a series of arrays that contain coordinates

and offsets of the polygons as Zarr arrays (OME-NGFF[9]) on disk and represented

in memory as Shapely objects in the GeoPandas DataFrame[10].

● Points: points contain large collections (typically in the order of millions or

billions) of coordinates and annotations such as transcript locations and their

associated metadata. They are stored as a parquet file on disk and represented in

memory as a lazy object with a DaskDataFrame[12].

● Tables: tables store molecular profile information (gene expression, protein

expression, etc.) and associated metadata for observations and variables. It also

stores the adjacency matrix of spatial graphs as well as any relevant additional

metadata. It is stored on disk and represented in memory as AnnData[11].
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Figure 4.2. Design overview and core functionality of SpatialData[8].

(A) The SpatialData storage format provides uniform storage for raw and derived data of diverse spatial
omics technologies. The format builds on five primitive elements (SpatialElements), stored to Zarr in an

OME-NGFF-compliant manner.
(B) The SpatialData Python library implements core operations for data access, alignment, queries, and
aggregation of spatial omics data. Transformations align multiple spatial elements to a common coordinate

system (CCS). The CCS allows unified spatial queries and aggregation operators to be deployed across datasets.
(C) The SpatialData provides access to various data formats, including vendor-specific file formats. Multiple

datasets can be stored in a single file and together are represented as a SpatialData object.

4.1.2.3. Advantage of SpatialData Format:

Inherited OME-Zarr, using Zarr arrays as a backend, SpatialData contains many

advantages of findability, accessibility, interoperability, and reusability (FAIR).

SpatialData is organized either as a tree of folders or files, with each element being entirely

independent. This ensures that there are no fragments left behind when data is deleted or

new data is appended, not as in formats like HDF5 or TileDB. Since only some small tiles

of spatial data need to be read simultaneously, discontinuous data storage not only poses no

issues but also has a significant benefit in parallel data transfer across the network.

Moreover, the components of SpatialData are delineated, simplifying access. Presently, a

majority of image data is stored as TiffFile, though the existence of numerous formats of a
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TiffFile necessitates human intervention for data reading and processing. Additionally,

TiffFile is governed by a Header, complicating interactions with the file (such as adding,

deleting, editing, transferring, and so on). In contrast, Zarr is managed by a JSON metadata

file, rendering similar interactions considerably easier. It can be asserted that Zarr

represents a significant advancement towards better alignment with image data.

Zarr seamlessly integrates with leading cloud storage platforms like Amazon S3, Google

Cloud Storage, and Azure Blob Storage. Its storage of independent elements with

extremely small storage units enables rapid data transfer, facilitating seamless remote

visualization of SpatialData.

4.1.3. Significance of Cell Segmentation:

Cell segmentation (Figure 4.3) stands as a significant step within single-cell image

processing. Within the outcomes furnished by image processing technologies, a vital data

type known as transcripts emerges. Transcripts encapsulate details concerning the spatial

positioning of mRNA transcripts, each carrying information regarding a distinct gene. By

cell segmentation, we discern the respective cells to which these transcripts pertain,

thereby facilitating the construction of an expression matrix for the segmented cells.

Figure 4.3. Detecting transcripts based on cell segmentation.
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Transcripts are small points in the figure. Each color of transcripts represents a gene. Segmentation masks (in

the right figure) represent cells. Each color of cells is a cell type that is determined by genes.

The expression matrix is a mRNA-seq dataset. mRNA-seq dataset in single-cell refers to a

collection of data generated through single-cell mRNA sequencing (mRNA-seq)

techniques. This dataset typically contains gene expression profiles from individual cells,

capturing the mRNA transcripts present within each cell. Each entry in the dataset

represents the expression levels of various genes in a single cell, providing valuable

information about the transcriptional landscape of heterogeneous cell populations. These

datasets are fundamental in single-cell analysis, enabling scientists to explore cellular

heterogeneity, uncover gene regulatory networks, and investigate cellular responses to

various stimuli or conditions. Moreover, dimensionality reduction techniques are often

employed for visualization or clustering purposes with these datasets. This aids scientists

in identifying cell types or enables AI algorithms to predict cell types.

4.2. Cells segmentation:

4.2.1. Materials:

4.2.1.1. Algorithm:
In our research, we leveraged the power of deep learning for the task of cell segmentation

in grayscale biological images. This involved employing a deep learning framework,

which essentially acts as a powerful software toolbox specifically designed for these types

of applications. Within this framework, we utilized the well-regarded Cellpose model,

known for its effectiveness in cell segmentation across various image types.

While the Cellpose model achieved good results, we sought to push the boundaries of

performance for our specific needs. Therefore, we developed a novel enhancement to the

original Cellpose model, which we refer to as the self-identification model. This model is

described in detail within section 4.2.2.2 of this paper.
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4.2.1.2. Datasets:

We utilized two datasets. First, we chose 400 labeled images from the comprehensive

TissueNet v1.1 (nearly 200.000 over 1 million labeled cells). Second, we leveraged 160

unlabeled images extracted from Vizgen's Public Data Release (large immunofluorescence

cell images, 322MB over 300 GB). Both labeled data were used for all models, but

unlabeled images were especially important for training the Identifying step for the

self-identification model.

A. B.

Figure 4.4. Dataset.

A. TissueNet Dataset B. Vizgen's Public Data Release Dataset.
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4.2.2. Methods:

4.2.2.1. Preprocessing:
● Inputs are converted to correct shapes (224 x 224 x 3) for training and rescaled so

that 0.0 is the 1st percentile and 1.0 is the 99th percentile of image intensities in

each channel.

● Creating vector flows from labels: The vector gradient flows (Figure 4.6) are

derived from a heat diffusion simulation (Figure 4.5), which guides pixels toward

the centers of cells while avoiding boundary intersections.

Figure 4.5. The diffusion of the cell center.

Figure 4.6. The horizontal and vertical flows.
The flows are the horizontal and vertical gradients of the diffusion.

4.2.2.2. Self-Identification Model
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In the Cellpose model, the way to get results goes directly from images, so it needs to train

with many different shapes of cells to define all the ways to segment them. However, in the

era of spatial transcriptomics technology, the resolution and number of datasets are

increasing rapidly day by day, so labeling all incoming data cannot catch up. Therefore, we

try to reduce all cases to a more general pattern, similar to what we are taught about cells

before segmenting them. Training segmentation needs labeled data, but training patterns

not, this solution may be a good way to handle new incoming data.

Our model builds upon the U-Net architecture by incorporating a self-supervised learning

component. This additional architecture aims to reconstruct the original input image,

effectively learning by introducing an "information bottleneck." The model leverages the

mean squared error (MSE) loss function to guide this reconstruction process.

For the “identifying” step, we utilize the Cellpose model as the backbone. For detail, we’ve

adapted Cellpose by employing its Downsampling block as our Encoder and designed a

corresponding Decoder block (Figure 4.7). In this way, the identifying step is capable of

detecting cellular patterns. Notably, this step is pre-trained on unlabeled data to refine its

ability to recognize these patterns.

The information bottleneck of the architecture has the same shape as the lowest layer of

Cellpose, we use it to run on the Upsampling block of Cellpose for segmentation. So the

computing cost of inference of the self-identification model is the same as the Cellpose

model, the images only run through Downsampling and Upsampling blocks to define cells.

However, Identifying blocks helps our models detect patterns of cells first, the model will

work well on incoming datasets. To keep these advantages, we use the combination of

Cellpose’s loss and Identifying loss to define the loss function for the segmentation step.

While segmenting data based on general patterns might lead to slightly lower accuracy

compared to directly segmenting for specific features, the significant advantages of
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segmenting cells within strange shapes are clearly shown. When the labeled data becomes

more diverse, we believe this solution only contains advantages.
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Figure 4.7. Self-Identification model.

Cellpose model with unsupervised elements to identify cell patterns.

4.2.2.3. Post Processing:
We do the segmentation step using the following post-processing procedures:

● Thresholding the probability channels:

○ Choose a threshold t, typically 0.5.

○ Only consider pixels with a probability higher than t (belongs to cells).

○ Each pixel is a starting point for the segmentation process.

● The gradient maps (both horizontal and vertical) indicate the direction of change in

intensity across the image.

● Dynamic system loop:

○ Each starting point runs for 200 iterations.

○ In each iteration:

■ With each pixel pij:
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■ Find the next grid location pi’j’ based on the vector flow (vector

created from horizontal and vertical gradients).

■ Update the vector flow of pij to the vector flow of the pi’j’.

○ After this step, the value at location (i, j) is called “stop location”.

● Construct a mask:

○ Find all stop locations.

○ Slice the image into boxes (shape n×n). In each box, the pixel with the most

frequent intensity of stop locations is assigned as a “cell center”. Each cell

center has a different integer value.

○ The value of each pixel is the value of its stop location.

○ Some pixels inside the cell may be assigned the wrong value, we fill these

“holes”.

Figure 4.8. The gradient of the diffusion image.

4.2.2.4. Parameters:
● Number of epochs: 500

● Optimizer: stochastic gradient descent

● Training parameters: Using default parameters of Cellpose.



Final Capstone Project 33 of 55

4.2.2.5. Loss function:
● Mean squared error (MSE) loss for the gradient channels (horizontal and vertical

flows) and self-identification layer.

𝑀𝑆𝐸 = 1
𝑛

𝑖=1

𝑛

∑ (𝑌
𝑖

− 𝑌
𝑖
)2 

● Binary-cross-entropy (BCE) loss for the probability channels.

)𝐵𝐶𝐸 =− 1
𝑁

𝑖=1

𝑁

∑ (𝑌
𝑖

× 𝑙𝑜𝑔(𝑌
𝑖
) + (1 − 𝑌

𝑖
) × 𝑙𝑜𝑔(1 − 𝑌

𝑖
)

● Training loss:

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐿𝑜𝑠𝑠 =  
𝐿𝑜𝑠𝑠

ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑓𝑙𝑜𝑤
 + 𝐿𝑜𝑠𝑠

𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑓𝑙𝑜𝑤

2  +  𝐿𝑜𝑠𝑠
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

 +  2 ×  𝐿𝑜𝑠𝑠
𝑠𝑒𝑙𝑓−𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

4.2.3. Evaluation metrics:

We use the F1-score to evaluate the performance of the model:

The F1-score is calculated by:

𝐹1 =  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⨯ 𝑟𝑒𝑐𝑎𝑙𝑙
2 * (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)

The precision and recall are calculated by:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑟𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑁

The prediction is quantified by matching each predicted mask to the ground-truth mask

that is most similar, as defined by the intersection over union metric (IoU). A detected

object is considered a match (true positive TP) if a ground truth object exists whose IoU is

greater than a given threshold τ∈ [0, 1]. Unmatched predicted objects are counted as false

positives (FP), and unmatched ground truth objects are considered as false negatives (FN).

We evaluated the predictions at various IoU thresholds (from 0.1 to 1 with step 0.1). The

final average precision is averaged over the AP for each image in the test set, using the

”matching_dataset” function from the Stardist package.

Another metric to evaluate the model is the accuracy score:
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𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃

In summary, the accuracy score is used to measure how often the model makes correct

predictions at the pixel level while the F1 score provides a more nuanced view by

considering both false positives and false negatives, making it more suitable for evaluating

models.

4.3. Spatial analysis:

4.3.1. Spatial Analysis in Disease Research:

Single-cell transcriptomics focuses on identifying individual cells via profiling gene

expression, allowing the discovery of rare cell types and forecasting future development

patterns by deducing state transitions of pseudotime. Meanwhile, spatial transcriptomics

explores gene expression within tissue contexts, providing information about the spatial

arrangement of transcriptomes within cells and tissues. It facilitates the generation of

high-resolution relationships of gene expression patterns within their natural spatial

context, which holds an important position in disease research.

In disease research, tumor biology, which analyzes the microenvironment and

heterogeneity of tumors, is an important part. In tumor biology, analyzing the immune cell

topography of solid tumors is a trend nowadays, it is an important predictive factor for the

progression of disease and response to immunotherapy. Tiwari, Ankur, et al.[17] mention

three patterns of immune cells in solid tumors “Immune inflamed”, “Immune desert” and

“Immune excluded” to describe conditions of anti-tumor activity.

“Immune inflamed” is the response of the immune system to harmful stimuli, such as

tumors in this context; “Immune desert” is defined as the lack of lymphocytes in either the

tumor parenchyma or the periphery of the tumor, and “Immune excluded” is characterized

by being confined to the stroma of the tumor and can not penetrate the parenchyma of the

tumors. The definition of these patterns so that we can visualize their distribution and
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monitor the patient's progress becomes a challenging problem. Previously, some scientists

tried to define them by manual annotation, there are several factors in spatial context

concerned such as cell densities or cell proportion:

● Galon et al.[13] determined the threshold of cell densities for each cell type in the

center of the tumor (CT) and in the invasive margin (IM) and assigned each region

as high or low status. Then they classified tumors based on CT/IM status, one of

their results, they showed that in CD3 cell type, the best survival is in case

high/high, the opposite is in case low/low.

● Desbois et al.[14] developed a method to transfer information from counts of CD8+

T-cells in tumor and stroma region to the number of cells and spatial distribution of

them, in there, the quantity of cells describes the number of CD8+ T-cells in tumor

and stroma and spatial distribution is determined by the ratio of this two counts

(Figure 4.9).

Figure 4.9. Spatial quantification of CD8+ T cells with a digital image analysis algorithm[14].

● Hammerl et al.[15] determined anti-tumor activity by measuring CD8+ T-cell at the

tumor border and center, for details:
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○ Immune-inflamed (inflamed): “almost equal frequencies of CD8+ T cells at

the border and center”

○ Immune excluded (excluded): “>10 times more CD8+ T cells at the border

compared to center”

○ Immune desert (ignore): “hardly any CD8+ T cells present at the border

and center.”

Hence, they found a significant relation between the phenotypes and survival,

tumors with an inflamed phenotype had the best prognosis, and the ignored

phenotype was the opposite.

However, spatial data is increasing rapidly, as of April 2024, the TCGA data portal has

11,732 cases with 19.55 Terabytes of data. This moment is when human resources are

insufficient, marking the onset of deep learning's entrance into spatial analysis. Besides

manual annotation, there are some unsupervised methods used to determine tumor regions

for finding out anti-tumor activity status. For instance, Dong, K., & Zhang, S.[4] designed a

Graph attention auto-encoder, which network integrates gene expression and spatial

information to identify spatial domains. The network uses gene expression as input
and clustering information, then builds a Cell type-aware attention layer from a spatial

graph and the clustering information.

In conclusion, spatial analysis is a powerful tool for disease research. Along with the rapid

increase of data, the utilization of deep learning for analysis is gaining popularity steadily.

This seems like an inevitable trend that cannot be stopped.

4.3.2. Spatial Analysis with Spatial Neighborhood Graph:

4.3.2.1. Construct a spatial neighborhood graph:

In many cases of spatial image analysis, we want to explore the relationship between

objects in an image. A spatial graph is an approach that assumes objects near others have a
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relationship with them. A spatial graph is a graph of spatial neighbors with observations as

nodes and neighbor-hood relations between observations as edges. Two well-known graphs

are the k-nearest neighbors graph (k-NN graph), Delaunay, and the geometric graph.

Let V = { vl, v2 ..... vn } be a set of points in Rn. The nearest neighbor of vi is a point vj (j !=

i) with minimum distance d(i, j) from vi. The distance d(i, j) is usually Euclidean distance.

To make the nearest neighbor unique we choose the point vj with minimum index in case of

the same distance, and denote it by nn(vi). For any v, we define the directed edge e(v) = (v,

nn(v)). The nearest neighbor graph of V, denoted by NNG(V), is the directed graph {V, E}

where E = {e(v) | v in V}.

4.3.2.1.1. K-nearest neighbors graph (k-NN graph):
In a k-NN graph, each set Vi contains exactly k nearest neighbors of vi. In total, NNG(V)

contains n ⨯ k elements. In the pairwise approach, the computational complexity is O(n2).

Figure 4.10. k-NN graph (k = 4).
The green point is the point of interest, blue points are the nearest neighbors of the point of interest. red

points are not the neighbors of the point of interest.

In some approximate approaches, the accuracy is calculated from the number of

intersections of the approximate graph and the exact graph divided by k.
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One simple idea to find an approximate graph is to calculate the “neighbors of neighbors”

from a random state. This method is called NN-Descent. The following are the steps of the

NN-Descent method:

1. Start with a random graph (connect each node to random nodes)

2. For each node:

3. Measure the distance from the node to the neighbors of its neighbors

4. If any are closer then update the graph accordingly, and keep only the closest

5. If any updates were made to the graph then go back to step 2, otherwise stop

This is an efficient approach to finding nearest neighbors because we do not need to

calculate the pairwise distance of 2 points in the graph, and it is easy to parallel. The

empirical cost of this algorithm is around O(n1.14).

4.3.2.1.2 Geometric graph:

In a geometric graph, each set Vi is a set that contains all vij such that d(i, j) < r. r is called

the “radius” of the graph. In the pairwise approach, the computational complexity is

O(n2).

Figure 4.11. Geometric graph.
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The green point is the point of interest, blue points are the nearest neighbors of the point of interest. red

points are not the neighbors of the point of interest.

4.3.2.2. Spatial auto-correlation (Moran's I statistics):

Spatial autocorrelation refers to the phenomenon where the values of a variable at one

location are related to the values of the same variable at nearby locations.

In simpler terms, the spatial autocorrelation tells the clustering tendency of similar things.

There are two main types of spatial autocorrelation:

● Positive spatial autocorrelation: similar values cluster together

● Negative spatial autocorrelation: dissimilar values cluster together.

Moran's I test is a popular tool to measure this clustering. The Moran’s I statistic for matrix

X and weight W is computed as:

𝐼 =  𝑛

𝑖=1

𝑛

∑  
𝑗=1

𝑛

∑ 𝑊
𝑖, 𝑗

 ×  𝑖=1

𝑛

∑  
𝑗=1

𝑛

∑ 𝑊
𝑖, 𝑗

 × 𝑍
𝑖
 × 𝑍

𝑗( )

𝑖 = 1

𝑛

∑ 𝑍
𝑖
2 

In which:

● : the deviation of an attribute for a feature from its mean .𝑍
𝑖

𝑖 𝑋
𝑖
 −  𝑋( )

● n: total number of features.

The test with confidence interval CI with a permutation picked uniformly at random:

● : No spatial autocorrelation (p-value: P = 0).𝐻
0

● : Spatial autocorrelation exists (P 0).𝐻
1

≠

Moran’s I score for the statistics I is computed as:𝑧
𝐼

𝑧
𝐼
 =  𝐼 − 𝐸 𝐼[ ]

𝑉 𝐼[ ]

where:
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● 𝐸 𝐼[ ] =  − 1
𝑛 − 1

● 𝑉 𝐼[ ] =  𝐸 𝐼2[ ] −  𝐸 𝐼[ ]2

P is calculated based on the normal continuous random variable. When P < 1 - CI:

● < 0:positive spatial autocorrelation.𝑧
𝐼

● < 0: positive spatial autocorrelation.𝑧
𝐼

Else there is no spatial autocorrelation.

4.3.2.3. Portrait of Graph and Graph Compass:

4.3.2.3.1. Portrait of Graph:

Figure 4.12. l-shell a node and its connections.

In this case, the node will be counted into , , , of the portrait graph. Distances of the𝐵
0,1

𝐵
1,4

𝐵
2,3

𝐵
3,5

node to others are only used to construct neighborhood graphs and the length of shortest paths is defined as

the minimum number of steps required for traversal.
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A portrait of a graph[16] represents the overall structure of a graph as a way to visualize, and

encode many structural properties by information about the distribution of distances

between nodes and degree distribution of nodes.

Figure 4.13. Example networks and their portraits[16].

Given two graphs and , portrait of each graph is defined as an array with𝐺 𝐺' 𝐵 𝑙 × 𝑘

elements such that is the number of nodes who has length of shortest path to nodes is𝐵
𝑙,𝑘

𝑘

( ). As noted above, we don’t compare two graphs directly, instead, we compare𝑙 𝑙 − 𝑠ℎ𝑒𝑙𝑙

their portrait and .𝐵 𝐵'

Instead of comparing two graphs, we compare two portrait graphs. First, this method

defines some probabilities with the number of nodes, and is the number of nodes in𝑁 𝑛
𝑐

connected component :𝑐

● Selecting two nodes at random, probabilities they are connected:
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𝑐
∑𝑛

𝑐
2

𝑁2

● The probabilities length of the shortest path (distance of two nodes) is :𝑙

# 𝑝𝑎𝑡ℎ𝑠 𝑤𝑖𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑠 𝑙
# 𝑎𝑙𝑙 𝑝𝑎𝑡ℎ𝑠 = 𝑘'=0

𝑁

∑ 𝑘'𝐵
𝑙,𝑘'

𝑐
∑𝑛

𝑐
2

● Selecting two nodes at random, probabilities one of two nodes has 𝑘 − 1

nodes at distance :𝑙

𝑘𝐵
𝑙,𝑘

𝑘'=0

𝑁

∑ 𝑘'𝐵
𝑙,𝑘'

Combining those probabilities gives us a probability of choosing two nodes at a distance 𝑙

and one of them has nodes at distances𝑘 𝑙:

𝑃(𝑘,  𝑙) =  
𝑘𝐵

𝑙,𝑘

𝑁2

and similarly with for . However, this distribution is only normalized when the𝑄(𝑘,  𝑙) 𝐵'

neighborhood graph is connected, or

=
𝑘
∑

𝑙
∑ 𝑘𝐵

𝑙,𝑘
=

𝑐
∑ 𝑛

𝑐
2 𝑁2

so this distribution is conditioned on the two randomly chosen nodes being connected:

𝑃(𝑘,  𝑙) =  
𝑘𝐵

𝑙,𝑘

𝑐
∑𝑛

𝑐
2

The similarity of the two graphs was defined Jensen-Shannon divergence

𝐷
𝐽𝑆

(𝐺,  𝐺') = 1
2 𝐾𝐿(𝑃 || 𝑀) + 1

2 𝐾𝐿(𝑄 || 𝑀) 
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with KL is Kullback-Leibler divergence and is the mixture distribution𝑀 = 1
2 (𝑃 + 𝑄)

of and .𝑃 𝑄

4.3.2.3.2. Graph Compass:

Single-cell transcriptomics focuses on identifying individual cells via profiling gene

expression, allowing the discovery of rare cell types and forecasting future development

patterns by deducing state transitions of pseudotime. Meanwhile, spatial transcriptomics

explores gene expression within tissue contexts, providing information about the spatial

arrangement of transcriptomes within cells and tissues. It facilitates the generation of

high-resolution relationships of gene expression patterns within their natural spatial

context. However, the similarities and dissimilarities of the spatial context under each

specific condition can not be identified by simple subtraction, we need to define the

interactions of cells to another in spatial and compare relationships between them via a

graph to demonstrate complex connections within separate cells in the same spatial

context.

Assuming that we constructed spatial neighborhood graphs of each specific condition, the

questions are finding how differences in each condition affect cells. The spatial context is

very special, the structure of the connection of a cell is rarely similar to another structure

before for the same cell and the same condition, so a comparison metric to detect the most

similarity will give us the answer about the interaction of cells within a specific condition

is necessary. Portrait of graphs is one of the solutions for this problem, the difference of

portraits approximates the difference of their graphs. So instead of comparing two graphs,

we compare their portraits.

Ali, Mayar, et al.[18] used GraphCompass to analyze three datasets derived from three

different technologies and spatial systems and gave results based on many different

comparison methods. By portrait distance method, they generated cell type-specific

subgraphs and observed changes in certain conditions over continuous time:
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● TOF breast cancer dataset[19]: To investigate the downstream effects of

myoepithelial disruption on breast tissue architecture at different scales, they used

GraphCompass to compare the spatial organization of myoepithelial cells

(MYOEP) in normal breast tissue with progressor tissue and non-progressor tissue,

and significantly more similar is found in progressor tissue.

● 10x Genomics Visium heart dataset[20]: To study the effects of ischemic injury at

the cellular organization level, they compare samples taken from three regions:

ischaemic zone (IZ), remote zone (RZ), and control cardiac tissue. They noticed

that the organization of cardiac muscle cells in the RZ differs from that of normal

tissue samples and IZ, it is somewhat similar to cardiac muscle cells in control

samples. This supports the idea that the damage caused by local vascular injury to

myeloid cells is only local to the site of injury.

● Stereo-seq axolotl dataset[21]: To elucidate the molecular events preceding the

regeneration of axolotl, researchers removed a part of the brain and collected

spatial transcriptomics data focused on the last two regenerative stages 30 and 60

days post-injury (30 DPI and 60 DPI). According to the portrait graph, multiple cell

types in the 60 DPI sample resemble the 30 DPI organization more than the adult

brain organization, indicating incomplete regeneration 60 days after injury.

However, certain cell types in the 60 DPI sample include dorsal pallium excitatory

neurons (dpEX) and Sfrp+ ependymal glial cells (sfrpEGC) exhibit spatial

organization similar to that of adult cells (ependymoglial cells), implying having

progress in the regeneration process (Figure 4.14).
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Figure 4.14. Stereo-seq dataset studying the axolotl brain during development and regeneration.[19]

a. Schematic figure describing the subset of regeneration stages we investigated. On the day of injury

(0 days post-injury, DPI), a section of the brain was removed. We compared a tissue sample collected

30 days post-injury (30 DPI) with a section obtained 60 days post-injury (60 DPI) and a control

sample from an unharmed adult axolotl.

b. Comparing entire tissue samples, using Weisfeiler-Lehman Graph Kernels, to show the overall

similarity in spatial organization across two stages (Injury 60 DPI versus Adult and Injury 60 DPI

versus Injury 30 DPI). The smaller the Wasserstein distance, the more similar the spatial organization

is under the two compared conditions.

c. Cell-type-specific subgraphs comparison, using the portrait method, across condition pairs (Injury

60 DPI versus Adult, Injury 60 DPI versus Injury 30 DPI).
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5. RESULTS

Figure 5.1. Benchmark models trained with 100 labeled training samples by IoU threshold.

For the established cell segmentation dataset, both algorithms show similar F1 scores and Accuracy.
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Table 3. Benchmark F1-score and Accuracy for models trained with 100 labeled training

samples by IoU threshold.

F1 - Score Accuracy

IoU Threshold Cellpose
model

Self - Identification
model

Cellpose
model

Self - Identification
model

0.50 0.933 0.932 0.875 0.873

0.55 0.92 0.919 0.851 0.85

0.60 0.906 0.903 0.827 0.823

0.65 0.887 0.883 0.797 0.79

0.70 0.862 0.857 0.757 0.75

0.75 0.825 0.818 0.702 0.692

0.80 0.763 0.753 0.617 0.603

0.85 0.645 0.636 0.476 0.466

0.90 0.42 0.418 0.266 0.264

0.95 0.091 0.093 0.047 0.049
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Original Image Self-Identification output Cellpose output

Figure 5.2. Ability to predict unlabeled datasets.

For new and unseen datasets (not appearing in training), the Self-Identification model shows significant

advantages compared to the Cellpose model.
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We benchmark the F1 and accuracy scores of both Self-Identification and Cellpose models

by increasing the number of training samples. Figure 5.1 shows that both models obtained

similar scores across the number of labeled samples. In some cases, we observe the

Self-identification model has a slightly lower score compared to the original version.

In Figure 5.1, we benchmarked the F1 and accuracy scores for the models that were trained

using 100 samples across the other IoU threshold. The figure shows that both models have

similar scores for all thresholds.

However, when we benchmarked the two models on the out-of-training dataset, and

observed a significant improvement in the Self-Identification model compared to the

original model in both F1 and Accuracy scores (See Figure 5.2). In particular, the

Self-Identification model works well for complex images where cells are located densely

and may overlap.

The marginal decrease in performance of the Self-Identification (SI) model compared to

the Cellpose model can be attributed to the SI model's unique approach of balancing

between the unlabeled and labeled datasets, whereas the Cellpose model prioritizes

optimization solely for labeled dataset performance. The SI model's design inherently aims

to strike a balance between utilizing both labeled and unlabeled data, potentially leading to

a nuanced trade-off in performance compared to the Cellpose model, which focuses

primarily on maximizing performance on labeled data.

However, this nominal decrease in performance with the SI model is overshadowed by its

notable advantage when faced with out-of-training datasets. The SI model's ability to

outperform the Cellpose model in such scenarios underscores its capacity for enhanced

generalization and adaptability to real-world applications. Consequently, this slight

reduction in performance can be viewed as an acceptable trade-off, underscoring the SI

model's contribution as a novel approach to addressing the challenges posed by

out-of-training datasets.
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6. DISCUSSION

Our capstone project explored the development of a machine learning model for image

segmentation, with a focus on adaptability to new datasets. The results presented in Section

5 indicate that our model achieved a slightly lower F1-score compared to the original

Cellpose. This is particularly evident when examining the performance at high IoU

thresholds.

While a lower F1 score might suggest a less accurate model overall, it's important to

consider the context of our project. The fact that our model achieves comparable

performance to Cellpose on the original dataset, but surpasses it in adaptability to new

datasets, signifies a potential strength. This suggests that our model is more generalizable

and less prone to dependence on the labeled training data.

6.1 Leveraging Limited Data:
Traditional machine learning algorithms often hit a roadblock when faced with limited

labeled data. This is particularly true in medical imaging, where the labeling process

requires significant time and specialized expertise from medical professionals. The scarcity

of labeled data can lead to a phenomenon where the model performs well on the training

data but fails to generalize to unseen data. This ultimately hinders its real-world

applicability.

Our proposed model, however, demonstrates promising results in scenarios with limited

labeled data. This suggests that it has the potential to excel in various applications where

acquiring large amounts of labeled data is either expensive or impractical. This could be

particularly beneficial in the medical field, where access to labeled medical images can be

restricted due to privacy concerns or limited resources. Additionally, our model's ability to
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perform well with less data could expedite the development of machine learning models in

other domains where data labeling is a bottleneck.

6.2. Future work:
Future work could involve investigating how the model performs with even smaller

amounts of labeled data. This would further strengthen the case for its effectiveness in

scenarios with limited resources. Additionally, exploring multiple techniques, such as

transfer learning or augmentation data, could potentially improve the F1 score while

maintaining the model's strength in handling limited labeled data.

6.3. Limitation:
It's important to acknowledge that a lower F1 score might still indicate limitations in

certain situations. Analyzing the types of cells or image features where the model performs

less well compared to Cellpose could help to identify areas for improvement.
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7. CONCLUSIONS AND

PERSPECTIVES

Spatial biology is transforming our understanding of life by revealing the complex

organization of molecules within tissues. But to unlock its true potential, we need to

overcome the challenge of limited labeled data. This thesis proposes a new object

segmentation model that combines the power of unsupervised and supervised learning,

specifically designed to address this bottleneck. By reducing the need for time-consuming

manual labeling, this model has the potential to significantly accelerate research in spatial

biology. This could lead to groundbreaking discoveries in areas like disease progression,

development, and the very fundamentals of how life works.
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