
Math Formula Images To
LaTeX Code Based On

End-to-End Approach With
Attention Mechanism

by

Trung Hoang Quoc, Bao Thai Duy

THE FPT UNIVERSITY HO CHI MINH CITY

Math Formula Images To
LaTeX Code Based On

End-to-End Approach With
Attention Mechanism

by

Trung Hoang Quoc, Bao Thai Duy
Supervisor: Trung Nguyen Quoc, Tien Nguyen Quoc

A final year capstone project submitted in partial fulfillment of the
requirement for the Degree of Bachelor of Artificial Intelligent in Computer

Science

DEPARTMENT OF ITS
THE FPT UNIVERSITY HO CHI MINH CITY

April 2024

Acknowledgements

In the acknowledgment section, we express our gratitude to the individuals
who have contributed their support, guidance, and encouragement to this
project.

� Our esteemed supervisors, Trung Nguyen Quoc and Tien Nguyen Quoc,
for their invaluable guidance, unwavering assistance, and meticulous
review throughout the entirety of this research endeavor.

We are grateful to all those who have helped us in ways both big and
small, and without whom this project would not have been possible. Thank
you all.

1

Author Contributions

� Conceptualization: Trung Hoang Quoc.

� Methodology & Software: Trung Hoang Quoc.

� Data Curation: Trung Hoang Quoc, Bao Thai Duy.

� Writing - Original Draft Preparation: Bao Thai Duy.

� Writing - Review and Editing: Trung Hoang Quoc.

� Supervision: Trung Nguyen Quoc, Tien Nguyen Quoc.

� Project Administration: Trung Hoang Quoc (Lead), Bao Thai Duy.

� Tools & Resources: Trung Hoang Quoc.

� Funding Acquisition: Bao Thai Duy.

All authors have read and agreed to the Final Capstone Project document.

2

Abstract

Recognizing mathematical formulas in images and translating them
into LaTeX sequences, both printed and handwritten, is challenging
due to the complexity of two-dimensional formulas and lack of training
data. Traditional methods can only handle simple formulas and are not
effective for complex formulas. In this paper, we introduce the Sumen
(Scaling Up Image-to-LaTeX Performance) model, an encoder-decoder
architecture based on Transformer with attention mechanism trained
on the largest dataset from previous works. The model achieves a
BLEU score of 95.59, Edit Distance (ED) of 97.3, and Exact Match
(EM) of 69.23 on the img2latex100k benchmark. On the CROHME
2014/2016/2019 benchmark, the corresponding results on Expression
Recognition Rates (ExpRate) are 58.01/82.39/78.99 and Word Error
Rate (WER) are 9.46/2.55/4.51. All of our metrics outperform state-
of-the-art methods on both printed and handwritten formulas.

Keywords: Image to LaTeX, printed formula recognition, handwritten
formula recognition, CROHME, Img2latex-100k

3

Contents

Acknowledgements 1

Author Contributions 2

Abstract 3

List of Figures 6

List of Tables 7

1 Introduction 8
1.1 Overview . 8

1.1.1 Context . 8
1.1.2 Math Formula Images To Latex 8

1.2 Background . 10
1.3 Specific Works . 10

2 Related Works 12

3 Project Management Plan 14

4 Materials and Methods 16
4.1 Materials . 16

4.1.1 Project Management Tool 16
4.1.2 Hardware . 17

4.2 Dataset . 17
4.3 Methods . 21

4.3.1 Encoder . 22
4.3.2 Decoder . 23
4.3.3 Attention Mechanism 23
4.3.4 Data Augmentation . 24
4.3.5 Beam Search Algorithm 25

4.4 Implementation Details . 26

5 Results 27
5.1 Metrics . 27
5.2 Printed Mathematical Expressions Benchmark 27

4

5.3 Handwritten Mathematical Expressions Benchmark 28

6 Discussion 31

7 Conclusions And Perspectives 32

A Appendix 33

References 35

5

List of Figures

1 Image-to-latex workflow . 9
2 Overall dataset . 18
3 Data examples . 19
4 Data format . 20
5 Overview of Sumen architecture (left: encoder, right: decoder) 21
6 Swin transformer block . 22
7 Scaled Dot-Product Attention (left) and Multi-Head Attention

(right) [37] . 24
8 Some examples of transformations of the original image that

will create a new training sample. 25
9 Printed formula recognition results 33
10 Handwritten formula recognition results 34

6

List of Tables

1 Project plan . 15
2 Source of dataset . 18
3 Comparison of performance printed formula recognition task

with previous methods on Im2latex-100k test set. 28
4 Comparison of performance handwritten formula recognition

task with previous methods on CROHME 2014/2016/2019 test
sets based on word error rate. 29

5 Comparison of performance handwritten formula recognition
task with previous methods on CROHME 2014/2016/2019 test
sets based on expression recognition rates score. 30

7

1 Introduction

1.1 Overview

1.1.1 Context

Mathematical formulas are essential for life and are widely used in various
fields. They are used to describe algorithms, illustrate ideas, clarify complex
concepts, and create clear and consistent content. To express mathematical
formulas in documents, we need to use markup languages. LaTeX is a language
used for typesetting and formatting mathematical formulas professionally. Its
application is spreading from science to technology, from papers to websites.
In the scientific field, LaTeX is widely used to write articles, scientific research
reports, blogs, and books. It can show the intuition of formulas and is a
powerful tool to represent them clearly, accurately, and easily readable. In
addition, in the field of education, LaTeX is often used to write mathematical
formulas in lectures, teaching materials, and tests. Mathematical formulas
can be used to explain complex concepts more clearly and attractively to
students.

Representing mathematical formulas with LaTeX is a real challenge, es-
pecially for non-professionals. Even for experts, typing long and complex
mathematical formulas is not easy. Mathematical expressions that are too
long or too complex can make users easily make some minor mistakes, which
can lead to time loss and inconvenience in editing. And these errors happen
frequently. If a formula is too long, repairing or adjusting it can be very
complicated, we may need to scan each part of the formula to be able to fix
the error, which can make us confused and impatient when we have to fix
each character. And for those who are new to LaTeX, typing each complex
code can be a big challenge, requiring a lot of time and patience.

1.1.2 Math Formula Images To Latex

To help people apply LaTeX to write mathematical formulas easily and
quickly, we have built a model that supports converting mathematical formula
images to corresponding LaTeX sequences. This way, users can easily convert
handwritten mathematical formulas on paper and convert them into LaTeX
format, saving time and effort compared to manual typing. In addition, our
model can also be used to support users in practicing how to use LaTeX,
helping users to easily understand the structure of writing LaTeX code and

8

learn to use it faster. This is especially useful for beginners with LaTeX, as they
can practice writing mathematical formulas and see the results immediately
through our model. It helps users learn effectively in learning LaTeX, thereby
promoting the learning process and approaching this language flexibly and
efficiently.

Converting math formula images to LaTeX, also known as img2latex, is the
process of translating mathematical formulas in images into LaTeX sequences.
It was created to help scientists, teachers, and non-professionals easily convert
mathematical formulas from images into LaTeX code and display them in
their documents. Formula recognition has two problems: recognizing images
containing handwritten mathematical expressions or printed mathematical
expressions. Handwritten formula recognition is more difficult than printed
formula recognition due to many reasons such as lack of large enough data,
confusion and lack of clarity due to bad handwriting.

\begin{array} { r } { \nu _ { \Sigma _ { j } } (x) = \nu _ { E } (x) \ , , } \end{array}

Encoder

Decoder

Figure 1: Image-to-latex workflow

An end-to-end approach means that the model receives image input and
directly generates a LaTeX sequences without going through the intermediate
steps illustrated in Figure 1. Specifically, the model takes raw image input
without the need for an OCR engine, bypassing the need for an OCR engine
to help prevent images from being segmented.

9

1.2 Background

Previously, traditional methods such as the INFTY system [34] created rules
based on structural analysis methods and syntactic parsers. These methods
could solve simple mathematical formulas such as superscript, subscript,
special symbols, and fractions. However, they could not solve complex and
long formulas because they only recognized characters and did not understand
the relationship between characters and multi-line formulas.

In recent years, the advent of deep neural networks has led to the proposal
of methods based on the encoder-decoder architecture. These methods are
widely used and have achieved good results in many areas such as image
captioning, machine translation, text to image, and speech to text. The
encoder-decoder architecture combines computer vision and natural language
processing. The encoder is responsible for processing the image and capturing
important information features. The decoder then receives these feature
information and generates the corresponding LaTeX string for the formulas
in the image. The encoder-decoder architecture simplifies in the process and
has achieved many successes in this field. The model receives the input and
directly generates the output without the need to complicate the data, such
as segmenting the location of text segments in the image.

Although the encoder-decoder architecture has been working well in recent
years, previous methods have only focused on the Printed Mathematical
Expression Recognition (PMER) [13, 14, 32, 38, 39, 48] or Handwritten
Mathematical Expression Recognition (HMER) [46, 9, 47, 20, 11, 42, 44].
However, they have not been very good at both tasks in the same method.

1.3 Specific Works

We use the encoder-decoder architecture and continue to improve and develop
it. We propose a large dataset of about 3.4 million image-text pairs to achieve
good generalization. We train both handwritten mathematical expressions
and printed mathematical expressions data at the same time, which helps
the model share LaTeX representation knowledge. We consider handwritten
mathematical expressions as a data augmentation. Our model can support
users in converting images to LaTeX for both printed and handwritten
formulas, and it achieves good results on various benchmarks. The primary
contributions are:

� Introducing a large-scale dataset for mathematical formula recognition.

10

� Proposing the Sumen model, which achieves state-of-the-art results
compared to existing methods on both PMER and HMER tasks.

� Releasing the source code and checkpoints of the Sumen model for the
research community to use and further develop.

11

2 Related Works

The advent of deep neural networks has replaced classical methods with
encoder-decoder architectures and brought about good results and real suc-
cess in the field of Computer Vision & Natural Language Processing. The
encoder uses models such as Convolutional Neural Networks (CNN) and
Vision Transformer (ViT) [16]. CNN is one of the most popular models used
in image processing, with the ability to automatically extract features from
image inputs through convolution and pooling layers, CNN has proven its
superiority in object recognition and image classification. Some popular CNNs
today include EfficientNet [35], which is designed to optimize computational
efficiency and accuracy by increasing the model size in depth, width, and
resolution. DenseNet [18] is a densely connected CNN architecture where
each layer is connected to every other layer in a dense manner. This enhances
information flow and addresses the vanishing gradient problem. Meanwhile,
ViT is a neural network architecture that uses Transformer, originally de-
veloped for natural language processing, but has been applied to the field
of computer vision. In ViT network, images are divided into patches and
represented as vectors, similar to how Transformer represents words in NLP.
Each vector represents a part of the image and is fed into the Transformer
network to extract information and perform tasks such as classification or
object detection. ViT has demonstrated the power of Transformer in com-
puter vision, which is no less than that of Transformer in natural language
processing.

Decoder based on Recurrent Neural Network (RNN) has the disadvantages
of vanishing gradient and exploding gradient, making it challenging to work
with long sequences. It is also slow to compute and can only learn short-term
memory [29]. For complex mathematical formula markup chains that can
exceed hundreds of LaTeX tokens, the hidden state vector in RNN is not
enough to compress all the information from the encoder. Long Short Term
Memory (LSTM) was introduced to solve the problems of RNN and to scale
up to capture long-term memory when needed. It mitigates the vanishing
gradient problem and can forget irrelevant information through the forget
gate. However, LSTM is complex, requires significant time and computational
resources, and cannot be parallelized. Transformer [37] was introduced based
on the self-attention mechanism and has gradually replaced methods like RNN
and LSTM due to its convenient parallel processing and ability to overcome
the limitations mentioned above. It is widely used with Large Language

12

Models (LLMs) and has achieved state-of-the-art results.
Methods using encoder-decoder architecture such as [14] propose neural

encoder-decode with coarse-to-fine attention mechanism, the author uses
CNN encoder to extract feature in the image and RNN decoder implements
a conditional language model over the vocabulary. [32] introduces a neural
transducer model with visual attention, which uses CNN as encoder and
RNN as decoder combined with using beam search in the inference process.
[39] proposed a method including CNN combined with positional encoding
used in encoder to extract features, features will be augmented with 2D
positional encoding before being unfolded into a vector and fed into the LSTM
decoder to translate into a sequence of LaTeX tokens. [48] has proposed a
model applying Transformer-based encoder-decoder architecture, in which
the encoder uses ViT and takes the idea of machine translation applied to
img2latex task, in addition this method combines using the YOLO model
[31] for the preprocessing step to separate single-line formulas from multi-line
formulas to improve the model’s accuracy.

Autoregressive-decoder methods like [44, 43] idea of learning and generat-
ing text strings in left-to-right direction. Since then, the BTTR [47] and ABM
[9] methods were born and introduced the novel bidirectional training strategy
with the purpose of being able to learn LaTeX sequences in left-to-right and
right-to-left directions on the Transformer decoder, helping the model learn
well and achieve higher accuracy. But entails parameters and longer training
time. Inspired by the coverage mechanism in RNN, CoMER [46] proposes a
model to improve the Transformer’s shortcomings in terms of sufferings from
the lack of coverage problem, using Attention Refinement Module (ARM) to
fine-tune attention weights with past alignment information without hurting
its parallelism and performs better than vanilla transformer decoder and RNN
decoder in the HMER task.

13

3 Project Management Plan

In the 14 weeks of project implementation, our team has completed our
project through activities listed:

� In the first two weeks, we brainstormed ideas and then searched for
relevant literature, papers, and the most suitable tools to complete
the project. We researched and explored methods appropriate for our
current conditions.

� From weeks 3 to 4, we researched and searched for datasets suitable
for the model we wanted to build. We found datasets for handwritten
mathematical expressions and printed mathematical expressions. These
datasets were then normalized by us to a common standard, preparing
them for our training step.

� In week 5, our team delved deeper into the models, architectures, and
identified the most suitable training methods.

� From week 6 to 9, we focused on training and fine-tuning certain
parameters to improve the results. Eventually, our model was completed
and yielded out performance compared to the papers we research.

� During weeks 9 to 11, we evaluate the results and write the final report,
and at the same time we write paper for the ICIT scientific conference
in Da Nang, September 2024.

� During the remaining weeks, we evaluated the results, completed the
report, and developed a demo website for better visualization.

14

Task Name Priority Owner Start Date End Date Status

Find documents High
Trung Hoang Quoc

Bao Thai Duy
01/01/2024 07/01/2024 Completed

Review papers High
Trung Hoang Quoc

Bao Thai Duy
08/01/2024 14/01/2024 Completed

Find dataset High Bao Thai Duy 15/01/2024 18/01/2024 Completed

Collect and
process
data

High
Trung Hoang Quoc

Bao Thai Duy
19/01/2024 28/01/2024 Completed

Research on
models and
architectures

High Trung Hoang Quoc 29/01/2024 04/02/2024 Completed

Find different
approaches and
choose the most
suitable one

High Bao Thai Duy 29/01/2024 04/02/2024 Completed

Experiment High
Trung Hoang Quoc

Bao Thai Duy
05/02/2024 17/03/2024 Completed

Compare results Low Trung Hoang Quoc 11/03/2024 17/03/2024 Completed

Writing paper High Trung Hoang Quoc 11/03/2024 31/03/2024 Completed

Writing report Medium
Trung Hoang Quoc

Bao Thai Duy
18/03/2024 31/03/2024 Completed

Review report
revision

Medium Bao Thai Duy 01/04/2024 07/04/2024 Completed

Create website
demo

Medium Trung Hoang Quoc 08/04/2024 14/04/2024 Completed

Future work Low
Trung Hoang Quoc

Bao Thai Duy
29/04/2024 ... Pending

Table 1: Project plan

15

4 Materials and Methods

4.1 Materials

4.1.1 Project Management Tool

Here are the tools we use for project management:

� Notion is an online application developed by Notion Labs Inc., renowned
for its freemium business model. It is a versatile application that sup-
ports note-taking, project management, planning, and collaboration.
With Notion, users can create notes in various formats, manage projects
using Kanban boards, plan personal tasks, work, and study with calen-
dars and to-do lists, and collaborate with team members in real-time.
Notion is a flexible and user-friendly tool, suitable for various purposes.

� Google Docs is a free online word processing application provided by
Google. With Google Docs, we can create, edit, and share documents
with team members in real-time. Google Docs provides basic tools for
text editing, allowing you to easily format fonts, font sizes, colors, etc. It
also integrates with other Google apps such as Drive, Gmail, Calendar,
etc., helping you work more efficiently.

� Google Sheets is a free online spreadsheet application provided by
Google. With Google Sheets, you can create spreadsheets with various
types of data, easily edit data, share spreadsheets with others in real-
time, use formulas to calculate and analyze data, and create visual
charts to illustrate data. Google Sheets is a powerful tool that helps
you manage and analyze data efficiently.

� Overleaf is an online text editing platform based on LaTeX, widely
used in academic and research communities. With Overleaf, users
can easily and effectively create scientific documents, technical reports,
theses, and other text documents without needing to install or configure
LaTeX on their personal computers. The intuitive interface of Overleaf
allows users to create and edit documents conveniently. This platform
integrates many useful features such as syntax error checking, version
control, and easy document sharing with colleagues. This helps enhance
collaboration and speed up work in group projects.

16

4.1.2 Hardware

Here are the hardware we used throughout this project:

� Kaggle is an online platform that provides a community for data
scientists to collaborate, share code, and compete in AI competitions.
It offers powerful computational resources for free, including GPU (2
NVIDIA Tesla T4 GPUs; 1 NVIDIA Tesla P100 GPU), TPU, CPU,
and 29GB of RAM. However, there is a weekly usage limit of 30 hours,
which resets on Saturday morning. Kaggle also offers unlimited free
storage for public data and 107GB of storage for private data. To avoid
the usage limit, we created multiple Kaggle accounts for the training
process.

� Personal Computer: We use personal laptops with 10th generation
Intel core i7 CPU and 8GB RAM for model inference and demo.

4.2 Dataset

In the formula recognition task, we divide it into two domains: Handwritten
and printed mathematical formulas. We use different datasets to train and
evaluate the model based on these two domains. In it, we collect and build
the largest dataset to date from online sources, creating a robust and well-
generalizable dataset. This dataset consists of approximately 3.4 million image-
text pairs, including both handwritten mathematical expressions (200,330
samples) and printed mathematical expressions (3,237,250 samples). The
percentage of data is illustrated in Figure 2 and data details are shown in
Figure 3. We publish the dataset at [17].

Printed mathematical expressions: We collect from Im2latex-100k
dataset [13], I2L-140K Normalized dataset and Im2latex-90k Normalized
dataset [32], Im2latex-170k dataset [2], Im2latex-230k dataset [3], latex-
formulas dataset [8] and Im2latex dataset [4].

Handwritten mathematical expressions: We collected data from the
Competition on Recognition of Online Handwritten Mathematical Expressions
(CROHME) dataset [26, 27, 25], Aida Calculus Math Handwriting Recognition
Dataset [1] and Handwritten Mathematical Expression Convert LaTeX [6]

Pre-processing: Due to the large dataset and the fact that the same
mathematical formula can be represented in different LaTeX string formats
in an image, it is easy to cause polymorphic ambiguity. To address this issue,

17

we use the normalization method with KaTeX parser [7]. We convert the raw
LaTeX strings into an abstract syntax tree, and then apply safe normalizing
tree transformation to eliminate ambiguity in the LaTeX markup strings.
Some previous works using this method include [13, 39].

Items Amount of data (train)

Im2latex-100k dataset [13] 93,925 image-text pairs

I2L-140K Normalized dataset and
Im2latex-90k Normalized dataset [32]

132,500 image-text pairs

Im2latex-170k dataset [2] 165,477 image-text pairs

Im2latex-230k dataset [3] 234,311 image-text pairs

latex-formulas dataset [8] 1,035,945 image-text pairs

Im2latex dataset [4] 1,586,584 image-text pairs

CROHME [26, 27, 25] 10,968 image-text pairs

Handwritten Mathematical Expression
Convert LaTeX [6]

11,181 image-text pairs

Aida Calculus Math Handwriting
Recognition Dataset [1]

100,000 image-text pairs

Table 2: Source of dataset

Handwritten mathematical expressions

Printed mathematical expressions

5.8%

94.2%

Figure 2: Overall dataset

18

Images Labels

y = \left(\begin{array} { c c c c } { { 0 } } & { { q _ { 1 } } } & { { 0 } } & { { 0 } } \\ { { 0 } } & { { 0 } } &
{ { q _ { 2 } } } & { { 0 } } \\ { { 0 } } & { { 0 } } & { { 0 } } & { { q _ { 3 } } } \\ { { q _ { 4 } } } & { { 0 } } & {

{ 0 } } & { { 0 } } \end{array} \right)

G _ { N } = g _ { s } ^ { 2 } \left(\frac { E } { E _ { s } } \right) ^ { D - 2 } = \left(\frac { \lambda } {
N } \right) ^ { 2 } \left(\frac { E } { E _ { s } } \right) ^ { D - 2 - 2 \alpha }

| n \rangle \langle n + \ell | = 2 (- 1) ^ { n } \sqrt { \frac { n ! } { (n + \ell) ! } } \left(\frac { 2 r ^
{ 2 } } { \theta } \right) ^ { \ell / 2 } L _ { n } ^ { \ell } (2 r ^ { 2 } / \theta) e ^ { - r ^ { 2 } / \theta }

e ^ { i \ell \varphi } \, ,

\begin{array} { r } { \phi (\xi) = V (t , x) , \xi = x - c t , c > 0 } \end{array}

\displaystyle { \mathrm { I \! E } } \left[\int _ { 0 } ^ { T } | Z ^ { \epsilon } (s) | ^ { 2 } d s \right]
\leq C _ { 2 } (1 + | x | ^ { 2 }) ,

U S - S U = \left(\begin{array} { c c c c } { 0 } & { 0 } & { 0 } & { 0 } \\ { a - f } & { m } & { c - g } & {
m } \\ { 0 } & { 0 } & { 0 } & { 0 } \\ { - a + f } & { - m } & { - c + g } & { - m } \end{array} \right) .

\Delta _ { _ { \! J } } (a) = F _ { _ { J } } ^ { - 1 } \Delta ^ { (0) } (a) F _ { _ { \! J } } ^ { } \qquad (
a \in U (s l (2))) \, .

\frac { \operatorname* { l i m } _ { c \to 2 } \frac { d } { d c } 1 \sin { \left(2 c \right) } \sin {
\left(4 c \right) } } { \operatorname* { l i m } _ { c \to 7 } \frac { d } { d c } 9 c }

\int _ { i \sqrt \Omega } ^ { S _ { 0 } (x) } { d S _ { 0 } \sqrt { \Omega + S _ { 0 } ^ { 2 } } } = \int _
{ x _ { 0 } } ^ { x } { d t \sqrt { \Lambda + \varphi ^ { 2 } (x) } }

M ^ { 4 } = \cos (\frac { (n + 1) \pi } { R + 2 }) / \cos (\frac { \pi } { R + e })

\frac { \sin \theta + \cos \theta + \tan \theta } { x + y + z }

\frac { \partial _ { \Delta } f } { \partial r } = \frac { f (r + \Delta , \ell) - f (r , \ell) } { \Delta } ;
\qquad \frac { \partial _ { \Delta } f } { \partial \ell } = \frac { f (r , \ell + \Delta) - f (r , \ell) } {

\Delta } \ .

Figure 3: Data examples

19

Data Format: We collected the dataset from many sources, which
resulted in various formats. Therefore, we needed to process and store them
in a common format. The dataset consists of four folders: train, test, val,
and root, as shown in Figure 4. The root folder contains images in gray, png,
jpg, and bmp formats. For the train, test, and val folders, we store the image
paths and corresponding LaTeX codes in CSV (Comma-Separated Values)
files with two columns. CSV is widely used in AI/ML and Data Science. It is
stored in a simple tabular format, which is flexible and widely supported. In
the train and val folders, there are files such as handwritten mathematical
expressions, printed mathematical expressions and total for both datasets.

Figure 4: Data format

20

4.3 Methods

Patch Partition

Linear Embedding

Swin
Transformer

Block

Patch Merging

Swin
Transformer

Block

Patch Merging

Swin
Transformer

Block

Patch Merging

Swin
Transformer

Block

St
ag

e
1

St
ag

e
2

St
ag

e
3

St
ag

e
4

× 2

× 2

× 14

× 2

Input Image

Masked Multi-Head
Attention

Layer Norm

+

Feed Forward

Layer Norm

+

Text Prediction

Nx

Multi-Head Attetion

+

Layer Norm

Outputs (Shifted right)

K V Q

Figure 5: Overview of Sumen architecture (left: encoder, right: decoder)

The architecture we use in this project is Nougat [10], which is a transformer-
based encoder-decoder architecture. Nougat is a Visual Transformer model
that performs an Optical Character Recognition (OCR) task to understand
scientific documents and translate them into markup language. The encoder
is Swin Transformer [24] and and the decoder is decoder-Transformer [37].
The entire architecture of the model is shown in Figure 5. We initialize the
weights from Nougat.

21

4.3.1 Encoder

The advent of Swin Transformer is a breakthrough in the field of computer
vision, combining the power of the attention mechanism and the hierarchical
architecture of CNN. In which width and height are reduced and channels
are increased in the later layers, providing flexibility to scale different image
sizes. Some notable features are shown in Figure 6 as follows: Window-
based self-attention is used to attend to patches or tokens in a window (local
attention). However, sharing information across different windows is crucial
to understanding the relationships between objects in the image. Therefore,
shifted windows allow windows to communicate, which is an idea based on
stride in CNN but with a different variation called cyclic shift. The model
takes an input of an image with size H×W × 3, which is then used to extract
important information from the image and output the encoder’s KV feature
vectors.

Window
Multi-head

Self Attention

Layer Norm

Layer Norm

MLP

Shift Window
Multi-head

Self Attention

Layer Norm

Layer Norm

MLP

Figure 6: Swin transformer block

22

4.3.2 Decoder

The decoder uses decoder-Transformer, which is an auto-regressive language
modeling (unidirectional), meaning that the model reads words only in the
left-to-right direction. The decoder receives important information in the
image represented by feature vectors KV from the encoder through cross
multi-head attention and generates LaTeX sequences corresponding to the
formulas in the image.

4.3.3 Attention Mechanism

Introduced to improve the performance of encoder-decoder models, the Atten-
tion mechanism is an indispensable part of modern models today, achieving
high accuracy in most NLP tasks. The Attention mechanism was proposed
in [37] with a parallel processing mechanism that works by comparing words
with each other pairwise to find the importance of the words it attends to,
including itself (self).

Self-Attention:

� To compute self-attention, three vectors Query, Key, Value (Q, K, V)
are created by three neural networks with different weights W .

Q = Wq ∗ x+ b

K = Wk ∗ x+ b

V = Wv ∗ x+ b

� The scaled dot-product attention function, illustrated in the Figure 7,
will perform the attention computation. During training, the vectors
Wq,Wk, and Wv will be learned to be adjusted for the best attention.

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V

Multi-Head Attention:

� Each Self-Attention module is called a Head.

Headi = Attentioni(x) = softmax

(
QiK

T
i√

dk

)
Vi

23

� Using multiple heads simultaneously is called Multi-Head Attention. It
is a collection of multiple self-attention layers, where each head performs
a different function. These heads operate in parallel and produce the
final result together at the same time. This helps to learn different
aspects of the relationship of a word with the other words in the sentence
and improves performance and converges faster during training.

MultiHead(Q,K, V) = Concat(Head1, Head2, . . . , Headh)W
0

Figure 7: Scaled Dot-Product Attention (left) and Multi-Head Attention
(right) [37]

4.3.4 Data Augmentation

We use image augmentation methods similar to Nougat during training to
apply random changes including RGB shift, bitmap, erosion, dilation, shift
scale rotation, grid distortion, affine, elastic transform, random brightness

24

contrast, image compression, gauss noise, gaussian blur. This increases the
amount of variation in a more diverse dataset and improves the generalization
ability of models, an example is illustrated in Figure 8.

Original Image

Augmentation

RGB Shift Bitmap Erosion

Dilation Affine Shift Scale Rotate

Random Brightness ContrastElastic TransformGrid Distortion

Image Compression Gauss Noise Gauss Blur

Figure 8: Some examples of transformations of the original image that will
create a new training sample.

4.3.5 Beam Search Algorithm

Beam Search is a popular search algorithm used in natural language processing
to generate text. The algorithm works by maintaining a finite set k of strings
representing the best sequences the algorithm has found so far. From these
strings, Beam Search generates the next token with the highest probability
that fits the initial string found. Beam Search works as follows:

1. Initialize k: representing the number of strings with the highest proba-
bility.

2. Expand the strings:

� Take each string in the k strings.

25

� Find the k next strings with the highest probability to concatenate,
creating k new strings.

3. Keep the best k strings: Sort the k ∗ k candidate strings by probability,
taking the k strings with the highest probability.

4. Repeat until termination: Repeat steps 2 and 3 until an end-of-string
token is encountered or a maximum length is reached.

5. Return the result: Return the string with the highest probability among
all strings in the last step.

4.4 Implementation Details

The entire model is used using Pytorch & Transformer framework, during
training we use Lion optimizer [12] with weight decay = 1e-2, β1 = 0.95
and β2 = 0.98. We use a max length of 512, image resolution of 224× 768
(height × width), learning rate of 1e-4 with 1k warmup steps based on cosine
schedule. The entire model was trained in 10 epochs with batch size of 2048
with gradient accumulation on 1 Tesla P100-PCIE-16GB GPU.

26

5 Results

5.1 Metrics

The following metrics are used for the test dataset:

� Bilingual Evaluation Understudy (BLEU): Compares the simi-
larity between the machine translation and the reference translation.
BLEU uses n-grams (combinations of n words) to measure the level of
overlap between text strings [28].

� Edit Distance (ED): Or Levenshtein distance [22], measures the
minimum number of edit operations required to transform one text
string into another. Edit operations include insertion, deletion, and
substitution of characters. The result is calculated by dividing the total
number of operations performed by the total number of words in the
reference. To compare with other methods, we take 1− minimum ED.

� Exact Match (EM): EM checks whether the machine translation
or model outputs match the references exactly (100%). If it matches
the references, the result is calculated by dividing the total number of
correct outputs by the total number of references.

� Word Error Rate (WER): WER uses edit distance to calculate the
accuracy percentage. Instead of using the distance between phonemes,
it uses the distance between words. The final result is calculated by
dividing the total number of substitutions + deletions + insertions by
the total number of words in the reference.

� Expression Recognition Rates (ExpRate): ExpRate uses edit
distance to calculate the accuracy of the model. For each line with
distance = 0, the total number of correct lines is increased by 1. The
final result is the number of correct lines divided by the total number
of lines.

5.2 Printed Mathematical Expressions Benchmark

We use the Im2latex-100k dataset for our experiments on PMER task, which
is a collection of about 100,000 real-world mathematical expressions rendered
from public papers on the arxiv.org server. This is a popular dataset dedicated

27

to the printed formula recognition task, and the test set consists of 10,285
samples. We use metrics such as BLEU score (4-gram), EM score, and ED
score to evaluate on this dataset. The results shown in the Table 3 indicate
that our model performs very well overall in terms of the entire string sequence
on BLEU and ED, with the highest result, while EM is only at an average
level and not the highest. This is affected by one or more characters being
incorrect, as we observed, leading to zero results on an entire string.

Model BLEU Edit Distance Exact Match

INFTY [34] 66.65 96.4 59.6
CNNENC [13] 75.01 61.17 53.53
WYGIWYS [13] 87.73 87.60 77.46

MI2LS w/o Reinforce [39] 89.08 91.09 79.39
MI2LS with Reinforce [39] 90.28 92.28 82.33

DoubleAttention [39] 88.42 88.57 79.81
DenseNet [38] 88.25 91.57 -
MathBERT [30] 90.45 90.11 87.52
Zhou et al. [48] 92.11 90.0 60.2
Wang et al. [38] 85.71 90.25 28.68

DenseNet(2 blocks) 85.82 91.38 35.68
C-S attention 86.54 90.75 31.79

DenseNet + C-S 88.25 91.57 37.09

Sumen-base (ours) 95.59 97.3 69.23

Table 3: Comparison of performance printed formula recognition task with
previous methods on Im2latex-100k test set.

5.3 Handwritten Mathematical Expressions Benchmark

We use the CROHME dataset to demonstrate the effectiveness of our model on
the HMER task, which is a large open dataset for handwritten mathematical
expressions. The test set consists of three versions: CROHME 2014 (986
samples), CROHME 2016 (1,147 samples), CROHME 2019 (1,199 samples).
We choose expression level metrics: ExpRate (%), ExpRate ≤ 1 error (%),
ExpRate≤ 2 error (%), and ExpRate≤ 3 error (%) provided by the CROHME
2019 organizers [25]. Furthermore, we use the WER metric to evaluate errors
at the word level. The results shown in the Table 5 & 4 and indicate that

28

we achieve the best results on 4/4 ExpRate metrics on CROHME 16&19.
However, on CROHME 14 we only achieve the best result on 1/4 ExpRate
metrics. Overall, our model outperforms other models.

Dataset Model ExpRate WER

CROHME 14

Dense [44] 50.1 13.9
Dense+MSA [44] 52.8 12.9

ABM [44] 56.85 10.1

Sumen-base (ours) 58.01 9.46

CROHME 16
Dense [44] 47.5 15.4

Dense+MSA [44] 50.1 13.7

Sumen-base (ours) 82.39 2.55

CROHME 19 Sumen-base (ours) 78.99 4.51

Table 4: Comparison of performance handwritten formula recognition task
with previous methods on CROHME 2014/2016/2019 test sets based on

word error rate.

29

Dataset Model ExpRate ≤ 1 error ≤ 2 error ≤ 3 error

CROHME 14

DenseWAP [44] 43.0 57.8 61.9 -
DenseWAP-TD [45] 49.1 64.2 67.8 -

WS-WAP [36] 53.65 - - -
Li et al. [23] 56.59 69.07 75.25 78.60

Ding et al. [15] 58.72 - - -
BTTR [47] 53.96 66.02 70.28 -

BTTR (CoMER) [46] 55.17 67.85 72.11 74.14
CoMER [46] 59.33 71.70 75.66 77.89
PAL [40] 39.66 56.80 68.51 -
WAP [43] 46.55 61.16 65.21 66.13
PGS [21] 48.78 66.13 73.94 -

PGS-v2 [41] 48.88 64.50 69.78 -
DLA [19] 49.85 - - -
ABM [9] 56.85 73.73 81.24 -

WYGIWYS [13] 36.4 - - -

Sumen-base (ours) 58.01 72.11 80.22 85.04

CROHME 16

DenseWAP [44] 40.1 54.3 57.8 -
DenseWAP-TD [45] 48.5 62.3 65.3 -

WS-WAP [36] 51.96 64.34 70.10 72.97
Li et al. [23] 54.58 69.31 73.76 76.02

Ding et al. [15] 57.72 70.01 76.37 78.90
BTTR [47] 52.31 63.90 68.61 -

BTTR (CoMER) [46] 56.58 68.88 74.19 76.90
CoMER [46] 59.81 74.37 80.30 82.56
WAP [43] 44.55 57.10 61.55 62.34
PGS [21] 36.27 - - -

PGS-v2 [41] 49.61 64.08 70.27 -
DLA [19] 47.34 - - -
ABM [9] 52.92 69.66 78.73 -

Sumen-base (ours) 82.39 89.97 94.42 95.99

CROHME 19

DenseWAP [44] 41.7 55.5 59.3 -
DenseWAP-TD [45] 51.4 66.1 69.1 -

Ding et al. [15] 61.38 75.15 80.23 82.65
BTTR [47] 52.96 65.97 69.14 -

BTTR (CoMER) [46] 59.55 72.23 76.06 78.40
CoMER [46] 62.97 77.40 81.40 83.07
ABM [9] 53.96 71.06 78.65 -

Sumen-base (ours) 78.99 86.22 90.5 92.07

Table 5: Comparison of performance handwritten formula recognition task
with previous methods on CROHME 2014/2016/2019 test sets based on

expression recognition rates score.

30

6 Discussion

During the implementation of this project, with a large amount of data, we
were limited in time and computing resources on Kaggle. Our model only
trained for 10 epochs, with the best results achieved on many metrics, we
believe that continued training of the model on our dataset can improve the
accuracy further and Sumen promises will be a useful model for applications
related to mathematical formula recognition.

31

7 Conclusions And Perspectives

We have proposed a transformer-based encoder-decoder architecture to convert
images containing mathematical formulas into LaTeX code. We also introduce
a new large dataset that helps scale up the accuracy of img2latex performance.
Compared with other models, we have succeeded in solving the major challenge
of recognizing mathematical formulas, including printed and handwritten
formulas in the same model, the results our model achieves state-of-the-art
performance on the CROHME 2016/2019 and Im2latex-100k test sets .

We have succeeded in solving the major challenge of recognizing math-
ematical formulas, including both printed and handwritten formulas in the
same model. Previous studies have had difficulty handling complex formu-
las and achieving state-of-the-art results on only handwritten mathematical
expressions or only printed mathematical expressions. Our new method has
defeated previous methods by using the Sumen architecture with improve-
ments in the Vision module and a large dataset that contributes to improving
the generalization ability of the model. This result is a clear demonstration of
the excellent performance of the Sumen model compared to previous methods.
In particular, the BLEU and ED indices on the img2latex100k benchmark
have demonstrated the model’s diverse and accurate capabilities in identifying
and converting images into LaTeX format. At the same time, the WER and
Exprate indexes on the CROHME benchmark are the highest, demonstrating
Sumen’s flexibility and efficiency for many types of mathematical formulas.
On the contrary, for the EM metric, it is not high but BLEU and ED are
the highest. The reason for this is that EM is used to evaluate individual
characters, while BLEU and ED are used to evaluate the overall string. string,
the wrong number of characters in the code will lead to bad results of the
metric.

Future work will concentrate on creating a large handwritten mathematical
expressions dataset to balance the current dataset using GAN as proposed
in [33] to convert printed mathematical expression images into handwritten
mathematical expression images.

32

A Appendix

Images Predicts Labels

= \int d x \left(\pi \left(x , t \right) \frac \delta { \delta
\phi \left(x , t \right) } - \left(\left(m ^ { 2 } - \nabla _ {
x } ^ { 2 } \right) \phi \left(x , t \right) \right) \, \frac
\delta { \delta \pi \left(x , t \right) } \right)

= \int d x \left(\pi \left(x , t \right) \frac { \delta } {
\delta \phi \left(x , t \right) } - \left(\left(m ^ { 2 } -
\nabla _ { x } ^ { 2 } \right) \phi \left(x , t \right) \right)
\, \frac { \delta } { \delta \pi \left(x , t \right) } \right)

\left[\partial _ { \mu } \partial ^ { \mu } - \partial _ { y }
^ { 2 } + e ^ { - 2 \sigma } \left\{ m ^ { 2 } + \left(\frac {
3 } { 1 6 } - \xi \right) R \right\} \right] \tilde { \varphi } +
e ^ { - \frac { 7 } { 2 } \sigma } V ^ { \prime } (e ^ { \frac
{ 3 } { 2 } \sigma } \tilde { \varphi }) = 0 .

\left[\partial _ { \mu } \partial ^ { \mu } - \partial _ { y
} ^ { 2 } + e ^ { - 2 \sigma } \left\{ m ^ { 2 } + \left(
\frac { 3 } { 1 6 } - \xi \right) R \right\} \right] \tilde {
\varphi } + e ^ { - \frac { 7 } { 2 } \sigma } V ^ { \prime
} (e ^ { \frac { 3 } { 2 } \sigma } \tilde { \varphi }) = 0
.

\begin{array} { r } { F _ { [j , j + 1] } = \frac { 1 } { 1 - g
_ { L } g _ { R } - \alpha g _ { L } + \overline { { \alpha }
} g _ { R } } \left(\begin{array} { l l } { 1 + g _ { L } g _ {
R } + \alpha g _ { L } + \overline { { \alpha } } g _ { R } }
& { 2 \rho g _ { L } } \\ { 2 \rho g _ { R } } & { 1 + g _ { L
} g _ { R } - \alpha g _ { L } - \overline { { \alpha } } g _
{ R } } \end{array} \right) , } \\ { \alpha = \alpha _ { j } ,
\rho = \rho _ { j } , g _ { L } (z) = z b _ { j } (z) , g _ {
R } (z) = z f _ { j + 1 } (z) . } \end{array}

\begin{aligned} F_ { [j , j + 1] } = \frac { 1 } { 1 - g _
L g _ R - \alpha g _ L + \overline\alpha g _ R}
\begin{pmatrix} 1 + g _ L g _ R + \alpha g _ L +
\overline\alpha g_R & 2 \rho g_L \\ 2 \rho g_R & 1 +
g _ L g _ R - \alpha g _ L - \overline\alpha g _ R
\end{pmatrix}, \\ \noalign{\vskip5pt} \alpha = \alpha
_ j, \rho = \rho _ j , g _ L (z) = z b _ j (z) , g _ R
(z) = z f _ { j + 1 } (z) . \end{aligned}

f _ { i j } = \sum _ { j = \pm } f _ { i j } g _ { i } + \sum _ {
j = \pm } f _ { i } g _ { - i - 2 } + \sum _ { j = \pm } g _ { i
} f _ { - i - 2 } .

\begin{array} { r } { f g = \sum _ { i \in \mathbb Z } f _
{ i } \tilde { g } _ { i } + \sum _ { i \in \mathbb Z } f _ { i
} g _ { \le i - 2 } + \sum _ { i \in \mathbb Z } g _ { i } f
_ { \le i - 2 } , } \end{array}

\{ h , F (r > 1) f (h) a _ { 3 } \} \geq \sigma r ^ { - 1 -
\epsilon } F (r > 1) f (h) + O (r ^ { - 1 - 2 \epsilon })

\{ h , F (r > 1) f (h) a _ { 3 } \} \geq \sigma r ^ { - 1
- \epsilon } F (r > 1) f (h) + O (r ^ { - 1 - 2 \epsilon
})

\omega = \sum _ { i = 1 } ^ { 2 m } d x _ { i } \wedge d
p _ { i } , \quad \mathrm { a n d } \quad g = \sum _ { i
= 1 } ^ { 2 m } (d x _ { i } ^ { 2 } + d p _ { i } ^ { 2 }) .

\omega = \sum _ { i = 1 } ^ { 2 m } d x _ { i } \wedge
d p _ { i } , \ \ \ \mathrm { a n d } \ \ \ g = \sum _ { i =
1 } ^ { 2 m } (d x _ { i } ^ { 2 } + d p _ { i } ^ { 2 }) .

\begin{array} { r l } { \left\| \left\{ g _ { j } \right\} _ { j \in
\mathbb { Z } } \right\| _ { L ^ { p } \ell ^ { q } (\widehat
{ P }) } } & { { } \leq \left\| \left\{ \gamma _ { j } E _ { j }
\left(f _ { j } \right) \right\} _ { j \in \mathbb { Z } }
\right\| _ { L ^ { p } \ell ^ { q } (\widehat { P }) } }
\end{array}

\begin{array} { r l } { \left\| \left\{ g _ { j } \right\} _ { j
\in \mathbb Z } \right\| _ { L ^ { p } \ell ^ { q } (
\widehat P) } } & { { } \leq \left\| \left\{ \gamma _ { j }
E _ { j } \left(f _ { j } \right) \right\} _ { j \in \mathbb Z
} \right\| _ { L ^ { p } \ell ^ { q } (\widehat P) } }
\end{array}

\begin{array} { r } { { \cal H } = \int d ^ { d } x \Bigl [{
\frac { 1 } { 2 } } \sum _ { i } (\partial _ { \mu } \Phi _ { i
}) ^ { 2 } + { \frac { 1 } { 2 } } \sum _ { i } r _ { i } \Phi _ {
i } ^ { 2 } + { \frac { 1 } { 4 ! } } \sum _ { i j k l } u _ { i j k
l } \; \Phi _ { i } \Phi _ { j } \Phi _ { k } \Phi _ { l } \Bigr] ,
} \end{array}

\begin{array} { r } { { \cal H } = \int d ^ { d } x \Bigl [{
\frac { 1 } { 2 } } \sum _ { i } (\partial _ { \mu } \Phi _
{ i }) ^ { 2 } + { \frac { 1 } { 2 } } \sum _ { i } r _ { i }
\Phi _ { i } ^ { 2 } + { \frac { 1 } { 4 ! } } \sum _ { i j k l }
u _ { i j k l } \; \Phi _ { i } \Phi _ { j } \Phi _ { k } \Phi _
{ l } \Bigr] , } \end{array}

H ^ { \prime } = \beta m + \mathcal { E } + \beta \frac {
\mathcal { O } ^ { 2 } } { 2 m } - \frac { 1 } { 8 m ^ { 2 } }
[\mathcal { O } , [\mathcal { O } , \mathcal { E }] + i
\mathcal { \dot { O } }] - \beta \frac { \mathcal { O } ^ {
4 } } { 8 m ^ { 3 } } + \frac { \beta } { 2 m } [\mathcal {
O } , \mathcal { E }] - \frac { \mathcal { O } ^ { 3 } } { 3
m ^ { 2 } } + \frac { i \beta \mathcal { \dot { O } } } { 2 m
} . . . \, ,

H ^ { \prime } = \beta m + \mathcal { E } + \beta \frac
{ \mathcal { O } ^ { 2 } } { 2 m } - \frac { 1 } { 8 m ^ { 2
} } [\mathcal { O } , [\mathcal { O } , \mathcal { E }]
+ i \mathcal { \dot { O } }] - \beta \frac { \mathcal { O
} ^ { 4 } } { 8 m ^ { 3 } } + \frac { \beta } { 2 m } [
\mathcal { O } , \mathcal { E }] - \frac { \mathcal { O
} ^ { 3 } } { 3 m ^ { 2 } } + \frac { i \beta \mathcal {
\dot { O } } } { 2 m } . . . \, ,

f (W _ { l _ { 1 } } , \ldots , W _ { l _ { K } }) = \sum _ {
l _ { 1 } , \ldots , l _ { K } = 0 } a _ { l _ { 1 } , \ldots , l _
{ K } } W _ { l _ { 1 } } ^ { , l _ { 1 } } , \ldots , W _ { l _ {
K } } ^ { , l _ { K } } .

\begin{array} { r } { f (W _ { t _ { 1 } } , \ldots , W _ {
t _ { K } }) = \sum _ { l _ { 1 } , \ldots , l _ { K } \geq 0
} a _ { l _ { 1 } , \ldots , l _ { K } } W _ { t _ { 1 } } ^ {
\diamond l _ { 1 } } \diamond \cdots \diamond W _ {
t _ { K } } ^ { \diamond l _ { K } } . } \end{array}

Figure 9: Printed formula recognition results

33

Images Predicts Labels

A = \sqrt { a + \frac { 1 } { \sqrt { a + \frac { 1 } { \sqrt { a
} } } } } + \sqrt { b }

A = \sqrt { a + \frac { 1 } { \sqrt { a + \frac { 1 } {
\sqrt { a } } } } } + \sqrt { b }

\frac { \sin \vartheta + i \cos \vartheta } { x + y + z } +
\tan \vartheta

\frac { \sin \theta + \cos \theta + \tan \theta } { x + y
+ z }

d s ^ { 2 } = d t ^ { 2 } - a ^ { 2 } (t) d x ^ { 2 } - b ^ { 2 }
(t) (d y ^ { 2 } + d z ^ { 2 })

d s ^ { 2 } = d t ^ { 2 } - a ^ { 2 } (t) d x ^ { 2 } - b ^ {
2 } (t) (d y ^ { 2 } + d z ^ { 2 })

{ \cal N } \, m = \frac { \alpha } { 2 \, m ^ { 2 } } + \sqrt {
\frac { \alpha ^ { 2 } + 4 \, n ^ { 2 } \beta } { 4 \, \, n ^ { 2
} } }

y _ { m i n } = \frac { \alpha } { 2 m ^ { 2 } } + \sqrt {
\frac { \alpha ^ { 2 } + 4 m ^ { 2 } \beta } { 4 m ^ { 2 }
} }

{ \frac { d } { d t } } (L ^ { n }) _ { \mu \nu } = i [{ \cal H
} , (L ^ { n }) _ { \mu \nu }] = [L ^ { n } , M] _ { \mu
\nu } \nonumber \, = \sum _ { \lambda \in { \cal R } }
\left(\phantom { \mathrm { \huge ~ H } } \hspace { - 1 5
p t } (L ^ { n }) _ { \mu \lambda } M _ { \lambda \nu } -
M _ { \mu \lambda } (L ^ { n }) _ { \lambda \nu } \right)
, \quad n = 1 , \ldots .

{ \frac { d } { d t } } (L ^ { n }) _ { \mu \nu } = i [{
\cal H } , (L ^ { n }) _ { \mu \nu }] = [L ^ { n } , M]
_ { \mu \nu } \nonumber \, = \sum _ { \lambda \in {
\cal R } } \left(\phantom { \mathrm { \huge ~ H } }
\hspace { - 1 5 p t } (L ^ { n }) _ { \mu \lambda } M
_ { \lambda \nu } - M _ { \mu \lambda } (L ^ { n })
_ { \lambda \nu } \right) , \quad n = 1 , \ldots .

\operatorname* { l i m } _ { d \rightarrow 2 } (R _ { a b }
- \frac { 1 } { 2 } R g _ { a b }) / (d - 2)

\operatorname* { l i m } _ { d \rightarrow 2 } (R _ {
a b } - \frac { 1 } { 2 } R g _ { a b }) / (d - 2)

B = \int _ { 0 } ^ { x } d ^ { 4 } x \int _ { x _ { \mu } } ^ { x
_ { \mu + 1 } } d y \int _ { x _ { \mu } } ^ { x _ { \mu } } d
y \int _ { y _ { \mu } } ^ { x _ { \mu } } d y \int (y _ { \mu
})

B = \int _ { 0 } ^ { x } d ^ { n } x \int _ { x _ { k } } ^ {
x _ { k + 1 } } d y \int _ { x _ { l } } ^ { x _ { l + 1 } } d
z f (y , z)

\left(Z \right) = \frac { \mathrm { S i n } \left(\frac {
\theta } { 2 i } + \frac { \Pi } { 2 \Pi } \, Z \right) } {
\mathrm { S i n } \left(\frac { \theta } { 2 i } - \frac { \Pi } {
2 \hbar } \, Z \right) }

(z) = \frac { \sin (\frac \theta { 2 i } + \frac \pi { 2
\pi } z) } { \sin (\frac \theta { 2 i } - \frac \pi { 2 h } z
) }

y d x = \frac { j ^ { 2 } - q ^ { 2 } } { 1 + q ^ { 2 } } d y x -
\frac { j q } { 1 + q ^ { 2 } } d x y

y d x = \frac { j ^ { 2 } - q ^ { 2 } } { 1 + q ^ { 2 } } d y
x - \frac { j q } { 1 + q ^ { 2 } } d x y

2 ^ { \frac { n - 2 } { n } } \biggl [\frac { B \left(1 - n
\right) } { C \left(3 n - 4 \right) } \biggr] ^ { \frac { n - 2 }
{ 2 n } }

2 ^ { \frac { n - 2 } { n } } [\frac { B (1 - n) } { C (3
n - 4) }] ^ { \frac { n - 2 } { 2 n } }

Figure 10: Handwritten formula recognition results

34

References

[1] https://www.v7labs.com/open-datasets/aida.

[2] . https://www.kaggle.com/datasets/rvente/im2latex170k.

[3] . https://www.kaggle.com/datasets/gregoryeritsyan/

im2latex-230k.

[4] . https://huggingface.co/datasets/AlFrauch/im2latex.

[5] What is image augmentation and how it can improve
the performance of deep neural networks. URL https:

//albumentations.ai/docs/introduction/image_augmentation/

#image-augmentation-to-the-rescue.

[6] https://huggingface.co/datasets/Azu/
Handwritten-Mathematical-Expression-Convert-LaTeX.

[7] Katex. https://katex.org/.

[8] https://huggingface.co/datasets/OleehyO/latex-formulas.

[9] Xiaohang Bian, Bo Qin, Xiaozhe Xin, Jianwu Li, Xuefeng Su, and
Yanfeng Wang. Handwritten mathematical expression recognition via
attention aggregation based bi-directional mutual learning. CoRR,
abs/2112.03603, 2021. URL https://arxiv.org/abs/2112.03603.

[10] Lukas Blecher, Guillem Cucurull, Thomas Scialom, and Robert Stojnic.
Nougat: Neural optical understanding for academic documents. CoRR,
abs/2308.13418, 2023. doi: 10.48550/ARXIV.2308.13418. URL https:

//doi.org/10.48550/arXiv.2308.13418.

[11] Chungkwong Chan. Stroke extraction for offline handwritten mathe-
matical expression recognition. IEEE Access, 8:61565–61575, 2020. doi:
10.1109/ACCESS.2020.2984627.

[12] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang,
Hieu Pham, Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and
Quoc V. Le. Symbolic discovery of optimization algorithms. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and

35

https://www.v7labs.com/open-datasets/aida
https://www.kaggle.com/datasets/rvente/im2latex170k
https://www.kaggle.com/datasets/gregoryeritsyan/im2latex-230k
https://www.kaggle.com/datasets/gregoryeritsyan/im2latex-230k
https://huggingface.co/datasets/AlFrauch/im2latex
https://albumentations.ai/docs/introduction/image_augmentation/#image-augmentation-to-the-rescue
https://albumentations.ai/docs/introduction/image_augmentation/#image-augmentation-to-the-rescue
https://albumentations.ai/docs/introduction/image_augmentation/#image-augmentation-to-the-rescue
https://huggingface.co/datasets/Azu/Handwritten-Mathematical-Expression-Convert-LaTeX
https://huggingface.co/datasets/Azu/Handwritten-Mathematical-Expression-Convert-LaTeX
https://katex.org/
https://huggingface.co/datasets/OleehyO/latex-formulas
https://arxiv.org/abs/2112.03603
https://doi.org/10.48550/arXiv.2308.13418
https://doi.org/10.48550/arXiv.2308.13418

Sergey Levine, editors, Advances in Neural Information Processing Sys-
tems 36: Annual Conference on Neural Information Processing Systems
2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023,
2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/

9a39b4925e35cf447ccba8757137d84f-Abstract-Conference.html.

[13] Yuntian Deng, Anssi Kanervisto, and Alexander M. Rush. What you get
is what you see: A visual markup decompiler. CoRR, abs/1609.04938,
2016. URL http://arxiv.org/abs/1609.04938.

[14] Yuntian Deng, Anssi Kanervisto, Jeffrey Ling, and Alexander M. Rush.
Image-to-markup generation with coarse-to-fine attention. In Doina
Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, volume 70 of Proceedings of Machine Learning Research,
pages 980–989. PMLR, 2017. URL http://proceedings.mlr.press/

v70/deng17a.html.

[15] Haisong Ding, Kai Chen, and Qiang Huo. An encoder-decoder approach
to handwritten mathematical expression recognition with multi-head
attention and stacked decoder. In Josep Lladós, Daniel Lopresti, and
Seiichi Uchida, editors, Document Analysis and Recognition – ICDAR
2021, pages 602–616, Cham, 2021. Springer International Publishing.
ISBN 978-3-030-86331-9.

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net, 2021. URL https://openreview.net/forum?

id=YicbFdNTTy.

[17] Trung Hoang and Bao Thai. Fushion image to latex dataset, 2024. https:
//www.kaggle.com/datasets/hongtrung/image-to-latex-dataset.

[18] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected
convolutional networks. CoRR, abs/1608.06993, 2016. URL http://

arxiv.org/abs/1608.06993.

36

http://papers.nips.cc/paper_files/paper/2023/hash/9a39b4925e35cf447ccba8757137d84f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/9a39b4925e35cf447ccba8757137d84f-Abstract-Conference.html
http://arxiv.org/abs/1609.04938
http://proceedings.mlr.press/v70/deng17a.html
http://proceedings.mlr.press/v70/deng17a.html
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://www.kaggle.com/datasets/hongtrung/image-to-latex-dataset
https://www.kaggle.com/datasets/hongtrung/image-to-latex-dataset
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993

[19] Anh Duc Le. Recognizing handwritten mathematical expressions via
paired dual loss attention network and printed mathematical expres-
sions. In 2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pages 2413–2418, 2020. doi:
10.1109/CVPRW50498.2020.00291.

[20] Anh Duc Le, Bipin Indurkhya, and Masaki Nakagawa. Pattern genera-
tion strategies for improving recognition of handwritten mathematical
expressions. CoRR, abs/1901.06763, 2019. URL http://arxiv.org/

abs/1901.06763.

[21] Anh Duc Le, Bipin Indurkhya, and Masaki Nakagawa. Pattern gener-
ation strategies for improving recognition of handwritten mathemat-
ical expressions. Pattern Recognit. Lett., 128:255–262, 2019. doi:
10.1016/J.PATREC.2019.09.002. URL https://doi.org/10.1016/j.

patrec.2019.09.002.

[22] Vladimir I. Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. Soviet physics. Doklady, 10:707–710, 1965. URL
https://api.semanticscholar.org/CorpusID:60827152.

[23] Zhe Li, Lianwen Jin, Songxuan Lai, and Yecheng Zhu. Improving
attention-based handwritten mathematical expression recognition with
scale augmentation and drop attention. In 17th International Con-
ference on Frontiers in Handwriting Recognition, ICFHR 2020, Dort-
mund, Germany, September 8-10, 2020, pages 175–180. IEEE, 2020.
doi: 10.1109/ICFHR2020.2020.00041. URL https://doi.org/10.1109/

ICFHR2020.2020.00041.

[24] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision
transformer using shifted windows. CoRR, abs/2103.14030, 2021. URL
https://arxiv.org/abs/2103.14030.

[25] Mahshad Mahdavi, Richard Zanibbi, Harold Mouchère, Christian Viard-
Gaudin, and Utpal Garain. ICDAR 2019 CROHME + TFD: competition
on recognition of handwritten mathematical expressions and typeset
formula detection. In 2019 International Conference on Document Anal-
ysis and Recognition, ICDAR 2019, Sydney, Australia, September 20-25,

37

http://arxiv.org/abs/1901.06763
http://arxiv.org/abs/1901.06763
https://doi.org/10.1016/j.patrec.2019.09.002
https://doi.org/10.1016/j.patrec.2019.09.002
https://api.semanticscholar.org/CorpusID:60827152
https://doi.org/10.1109/ICFHR2020.2020.00041
https://doi.org/10.1109/ICFHR2020.2020.00041
https://arxiv.org/abs/2103.14030

2019, pages 1533–1538. IEEE, 2019. doi: 10.1109/ICDAR.2019.00247.
URL https://doi.org/10.1109/ICDAR.2019.00247.

[26] Harold Mouchère, Christian Viard-Gaudin, Richard Zanibbi, and Ut-
pal Garain. ICFHR 2014 competition on recognition of on-line hand-
written mathematical expressions (CROHME 2014). In 14th Inter-
national Conference on Frontiers in Handwriting Recognition, ICFHR
2014, Crete, Greece, September 1-4, 2014, pages 791–796. IEEE Com-
puter Society, 2014. doi: 10.1109/ICFHR.2014.138. URL https:

//doi.org/10.1109/ICFHR.2014.138.

[27] Harold Mouchère, Christian Viard-Gaudin, Richard Zanibbi, and Ut-
pal Garain. ICFHR2016 CROHME: competition on recognition of
online handwritten mathematical expressions. In 15th International
Conference on Frontiers in Handwriting Recognition, ICFHR 2016,
Shenzhen, China, October 23-26, 2016, pages 607–612. IEEE Com-
puter Society, 2016. doi: 10.1109/ICFHR.2016.0116. URL https:

//doi.org/10.1109/ICFHR.2016.0116.

[28] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu:
a method for automatic evaluation of machine translation. In Pro-
ceedings of the 40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia, PA, USA, pages
311–318. ACL, 2002. doi: 10.3115/1073083.1073135. URL https:

//aclanthology.org/P02-1040/.

[29] Razvan Pascanu, Tomás Mikolov, and Yoshua Bengio. On the dif-
ficulty of training recurrent neural networks. In Proceedings of the
30th International Conference on Machine Learning, ICML 2013, At-
lanta, GA, USA, 16-21 June 2013, volume 28 of JMLR Workshop
and Conference Proceedings, pages 1310–1318. JMLR.org, 2013. URL
http://proceedings.mlr.press/v28/pascanu13.html.

[30] Shuai Peng, Ke Yuan, Liangcai Gao, and Zhi Tang. Mathbert: A
pre-trained model for mathematical formula understanding. CoRR,
abs/2105.00377, 2021. URL https://arxiv.org/abs/2105.00377.

[31] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali
Farhadi. You only look once: Unified, real-time object detection. CoRR,
abs/1506.02640, 2015. URL http://arxiv.org/abs/1506.02640.

38

https://doi.org/10.1109/ICDAR.2019.00247
https://doi.org/10.1109/ICFHR.2014.138
https://doi.org/10.1109/ICFHR.2014.138
https://doi.org/10.1109/ICFHR.2016.0116
https://doi.org/10.1109/ICFHR.2016.0116
https://aclanthology.org/P02-1040/
https://aclanthology.org/P02-1040/
http://proceedings.mlr.press/v28/pascanu13.html
https://arxiv.org/abs/2105.00377
http://arxiv.org/abs/1506.02640

[32] Sumeet S. Singh. Teaching machines to code: Neural markup generation
with visual attention. CoRR, abs/1802.05415, 2018. URL http://arxiv.

org/abs/1802.05415.

[33] Matthias Springstein, Eric Müller-Budack, and Ralph Ewerth. Unsuper-
vised training data generation of handwritten formulas using generative
adversarial networks with self-attention. CoRR, abs/2106.09432, 2021.
URL https://arxiv.org/abs/2106.09432.

[34] Masakazu Suzuki, Fumikazu Tamari, Ryoji Fukuda, Seiichi Uchida, and
Toshihiro Kanahori. INFTY: an integrated OCR system for mathematical
documents. In Proceedings of the 2003 ACM Symposium on Document
Engineering, Grenoble, France, November 20-22, 2003, pages 95–104.
ACM, 2003. doi: 10.1145/958220.958239. URL https://doi.org/10.

1145/958220.958239.

[35] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling
for convolutional neural networks. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, Califor-
nia, USA, volume 97 of Proceedings of Machine Learning Research, pages
6105–6114. PMLR, 2019. URL http://proceedings.mlr.press/v97/

tan19a.html.

[36] Thanh-Nghia Truong, Cuong Tuan Nguyen, Khanh Minh Phan, and
Masaki Nakagawa. Improvement of end-to-end offline handwritten
mathematical expression recognition by weakly supervised learning. In
17th International Conference on Frontiers in Handwriting Recogni-
tion, ICFHR 2020, Dortmund, Germany, September 8-10, 2020, pages
181–186. IEEE, 2020. doi: 10.1109/ICFHR2020.2020.00042. URL
https://doi.org/10.1109/ICFHR2020.2020.00042.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. CoRR, abs/1706.03762, 2017. URL http://arxiv.org/

abs/1706.03762.

[38] Jian Wang, Yunchuan Sun, and Shenling Wang. Image to latex with
densenet encoder and joint attention. In Rongfang Bie, Yunchuan Sun,
and Jiguo Yu, editors, 2018 International Conference on Identification,

39

http://arxiv.org/abs/1802.05415
http://arxiv.org/abs/1802.05415
https://arxiv.org/abs/2106.09432
https://doi.org/10.1145/958220.958239
https://doi.org/10.1145/958220.958239
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
https://doi.org/10.1109/ICFHR2020.2020.00042
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762

Information and Knowledge in the Internet of Things, IIKI 2018, Beijing,
China, October 19-21, 2018, volume 147 of Procedia Computer Science,
pages 374–380. Elsevier, 2018. doi: 10.1016/J.PROCS.2019.01.246. URL
https://doi.org/10.1016/j.procs.2019.01.246.

[39] Zelun Wang and Jyh-Charn Liu. Translating math formula im-
ages to latex sequences using deep neural networks with sequence-
level training. Int. J. Document Anal. Recognit., 24(1):63–75, 2021.
doi: 10.1007/S10032-020-00360-2. URL https://doi.org/10.1007/

s10032-020-00360-2.

[40] Jin-Wen Wu, Fei Yin, Yan-Ming Zhang, Xu-Yao Zhang, and Cheng-
Lin Liu. Image-to-markup generation via paired adversarial learn-
ing. In Michele Berlingerio, Francesco Bonchi, Thomas Gärtner, Neil
Hurley, and Georgiana Ifrim, editors, Machine Learning and Knowl-
edge Discovery in Databases - European Conference, ECML PKDD
2018, Dublin, Ireland, September 10-14, 2018, Proceedings, Part I,
volume 11051 of Lecture Notes in Computer Science, pages 18–34.
Springer, 2018. doi: 10.1007/978-3-030-10925-7\ 2. URL https:

//doi.org/10.1007/978-3-030-10925-7_2.

[41] Jin-Wen Wu, Fei Yin, Yan-Ming Zhang, Xu-Yao Zhang, and Cheng-
Lin Liu. Handwritten mathematical expression recognition via paired
adversarial learning. Int. J. Comput. Vis., 128(10):2386–2401, 2020.
doi: 10.1007/S11263-020-01291-5. URL https://doi.org/10.1007/

s11263-020-01291-5.

[42] Jianshu Zhang, Jun Du, and Li-Rong Dai. A gru-based encoder-decoder
approach with attention for online handwritten mathematical expression
recognition. CoRR, abs/1712.03991, 2017. URL http://arxiv.org/

abs/1712.03991.

[43] Jianshu Zhang, Jun Du, Shiliang Zhang, Dan Liu, Yulong Hu, Jin-
Shui Hu, Si Wei, and Li-Rong Dai. Watch, attend and parse: An
end-to-end neural network based approach to handwritten mathematical
expression recognition. Pattern Recognit., 71:196–206, 2017. doi: 10.1016/
J.PATCOG.2017.06.017. URL https://doi.org/10.1016/j.patcog.

2017.06.017.

40

https://doi.org/10.1016/j.procs.2019.01.246
https://doi.org/10.1007/s10032-020-00360-2
https://doi.org/10.1007/s10032-020-00360-2
https://doi.org/10.1007/978-3-030-10925-7_2
https://doi.org/10.1007/978-3-030-10925-7_2
https://doi.org/10.1007/s11263-020-01291-5
https://doi.org/10.1007/s11263-020-01291-5
http://arxiv.org/abs/1712.03991
http://arxiv.org/abs/1712.03991
https://doi.org/10.1016/j.patcog.2017.06.017
https://doi.org/10.1016/j.patcog.2017.06.017

[44] Jianshu Zhang, Jun Du, and Lirong Dai. Multi-scale attention with dense
encoder for handwritten mathematical expression recognition. CoRR,
abs/1801.03530, 2018. URL http://arxiv.org/abs/1801.03530.

[45] Jianshu Zhang, Jun Du, Yongxin Yang, Yi-Zhe Song, Si Wei, and Lirong
Dai. A tree-structured decoder for image-to-markup generation. In
Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pages 11076–11085. PMLR, 2020. URL
http://proceedings.mlr.press/v119/zhang20g.html.

[46] Wenqi Zhao and Liangcai Gao. Comer: Modeling coverage
for transformer-based handwritten mathematical expression recognition.
In Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria
Farinella, and Tal Hassner, editors, Computer Vision – ECCV 2022,
pages 392–408, Cham, 2022. Springer Nature Switzerland. ISBN 978-3-
031-19815-1.

[47] Wenqi Zhao, Liangcai Gao, Zuoyu Yan, Shuai Peng, Lin Du, and Ziyin
Zhang. Handwritten mathematical expression recognition with bidi-
rectionally trained transformer. CoRR, abs/2105.02412, 2021. URL
https://arxiv.org/abs/2105.02412.

[48] Mingle Zhou, Ming Cai, Gang Li, and Min Li. An end-to-end formula
recognition method integrated attention mechanism. Mathematics, 11
(1), 2023. ISSN 2227-7390. doi: 10.3390/math11010177. URL https:

//www.mdpi.com/2227-7390/11/1/177.

41

http://arxiv.org/abs/1801.03530
http://proceedings.mlr.press/v119/zhang20g.html
https://arxiv.org/abs/2105.02412
https://www.mdpi.com/2227-7390/11/1/177
https://www.mdpi.com/2227-7390/11/1/177

	Acknowledgements
	Author Contributions
	Abstract
	List of Figures
	List of Tables
	Introduction
	Overview
	Context
	Math Formula Images To Latex

	Background
	Specific Works

	Related Works
	Project Management Plan
	Materials and Methods
	Materials
	Project Management Tool
	Hardware

	Dataset
	Methods
	Encoder
	Decoder
	Attention Mechanism
	Data Augmentation
	Beam Search Algorithm

	Implementation Details

	Results
	Metrics
	Printed Mathematical Expressions Benchmark
	Handwritten Mathematical Expressions Benchmark

	Discussion
	Conclusions And Perspectives
	Appendix
	References

