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ABSTRACT

Sign language translation systems play a crucial role in eliminating communication
barriers between Deaf and Hard-of-Hearing (DHH) individuals and those who can hear.
These systems are complex and consist of multiple components. Among them, the auto-
matic translation of spoken language into sign language, known as Sign Language Pro-
duction (SLP), holds the potential to revolutionize sign language communication appli-
cations. Contrary to its importance and necessity, research in SLP still lacks depth,
with only a few models publicly available with insufficient evaluations and comparisons.
Consequently, the comprehension of SLP experiments remains obscure, with few new
studies emerging in this domain. This project endeavors to investigate the efficacy of
existing public SLP methods on American Sign Language (ASL). Specifically, the ex-
periment involved training and evaluating three distinct approaches (Regressive Training
with Progressive Transformers, Adversarial Training with Progressive Transformers, and
Non-Autoregressive Transformers with Gaussian Space) using the How2Sign dataset, one
of the most comprehensive datasets comprising instructional videos in American Sign
Language. Back-translation evaluation metrics were employed to assess the performance
of these methods in translating discrete spoken language sentences into continuous 3D
sign pose sequences. The results indicate that, for the complex data involved in trans-
lating from spoken language to sign language in SLP, Non-Autoregressive Transformers
with Gaussian Space (NSLP-G) outperform other methods, accurately capturing both
manual and non-manual features with minimal errors. Additionally, with the Progressive
Transformers model, the effectiveness of adversarial compared to sole regressive training
in translate from text to sign language field is observed. Within the scope of this thesis
project, a Minimum Viable Product (MVP) was developed to test real-time text-to-sign
language translation. The project’s outcomes can provide valuable insights for future
researchers, guiding them towards viable approaches in exploring this field or considering
practical applications. The report also outlines the limitations of this project and pro-
poses future work that could be utilized to further develop and improve sign language
production models.

Keywords: Sign Language Production, Continuous Sign Language Generation, Progres-
sive Transformers, Adversarial Training, Non-Autoregressive Transformer, Variational
Autoencoder, Human Pose Generation.
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Chapter 1

INTRODUCTION

Since the dawn of humanity, communication has played a pivotal role in the devel-
opment as a species. Today, it’s hard to imagine living in a world where others cannot
understand one another, individuals struggle to comprehend what others say. This dis-
connect in communication profoundly affects both individual and societal development.
However, these barriers are precisely what Deaf and Hard-of-Hearing (DHH) individu-
als face. Their communication language, Sign Languages (SLs), utilizes visual-gestural
modalities to convey meaning through manual articulations combined with non-manual
elements like facial expressions and body movements. While two Deaf individuals without
physical disabilities can communicate with each other using sign language, communica-
tion becomes significantly challenging when a Hearing person interacts with a Deaf or
Hard-of-Hearing individual, and vice versa. Sign language is difficult to learn and inac-
cessible to those outside the Deaf community. Moreover, due to audism, DHH individuals
are often disregarded or compelled to use alternative communication methods with which
they may not be comfortable (e.g. write down any message or use special gloves for the
detection of signs), creating further barriers to daily communication.

In the context of the rapidly evolving field of AI, particularly with notable successes in
machine translation, the development of models for translating between spoken language
and sign language becomes more feasible than ever before. This advancement is crucial
for the Deaf community because translation provides a communication bridge between
DHH individuals and the Hearing population, thereby granting DHH individuals access
to information like everyone else.

This Introduction chapter lays the groundwork for exploring the subsequent chapters,
providing a comprehensive overview of the purpose, objectives, and research methods
used in this study. Following this introduction, the subsequent sections will provide an
overview of the project, followed by an exploration of what motivated the researchers
to conduct this study both practically and technically. Subsequently, specific objectives
will be outlined, and the structure of this report will be briefly described to lead into the
following sections.
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1.1 Overview

Sign languages serve as vital communicative tools within the deaf and hard-of-hearing
(DHH) community and are a central element of Deaf culture. The World Health Orga-
nization (WHO) reports that over 5% of the world’s population, totaling 430 million
people, require rehabilitation to address their disabling hearing loss, which includes 34
million children. It is estimated that by 2050, this number will surpass 700 million people,
equating to 1 in every 10 individuals worldwide experiencing disabling hearing loss [1].
According to National Geographic, there are 300 different forms of sign language around
the world. [2]. These figures underscore the significant portion of the population in need
of alternative communication methods, especially considering the predominance of an
aural society that often marginalizes DHH individuals, leading to audism and isolation.

Sign languages offer a solution to bridge communication gaps between signers, remov-
ing barriers posed by verbal languages. However, the challenge persists when individuals
cannot communicate using signs, creating a substantial barrier between the hearing and
DHH communities. Sign languages, utilizing the visual-gestural modality, are recognized
as natural languages, complete with their own grammar and lexicons [3]. Proficiency in
sign language among hearing individuals remains limited, often resulting in situations
where Deaf and Hard-of-Hearing (DHH) individuals resort to alternative communication
methods, such as writing messages or utilizing specialized gloves for sign detection. For
Deaf individuals, sign language is not merely a tool but a fundamental aspect of their
identity and culture, offering a more natural and comprehensive means of communication
compared to written forms of spoken language. To address this, non-intrusive communi-
cation tools adaptable to both signers and non-signers must be developed, ensuring the
comfort and inclusivity of the DHH community.

Developing a robust system for translating spoken languages into sign languages and
vice versa is essential to bridging communication gaps between the DHH and hearing
communities. This translation system comprises two tasks: Sign Language Translation
(SLT) functions to translate from sign to text, while Spoken Language Translation (SLP)
translates text to sign. This project focuses specifically on the SLP task, translating
spoken language into sign language. The following section 1.2, Motivation, will further
elucidate why Sign Language Production was chosen for this project in both practical
and technical motivation.

1.2 Motivation

1.2.1 Practical motivation

Throughout history, Deaf communities have advocated for the recognition and use
of sign languages, asserting their legitimacy as sophisticated communication modalities
on par with spoken languages in all linguistic and social aspects [3]. However, in pre-
dominantly oral societies, deaf individuals are often encouraged to rely on spoken lan-
guages, either through lip-reading or text-based communication. Previous researchs have
primarily focused on Sign Language Translation (SLT), translates from sign language
into spoken language, catering mainly to hearing individuals who can receive information
through their native language (text/speech). However, this approach does not adequately
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address the needs of Deaf and Hard-of-Hearing (DHH) individuals, whose natural mode
of communication is sign language. Deaf communities strongly prefer to communicate in
sign languages, both online and in face-to-face interactions, both among themselves and
with spoken language communities [4, 5]. Therefore, creating translation systems profi-
cient in converting spoken language into sign language is crucial for eliminating language
barriers, enabling individuals to communicate more comfortably and naturally with one
another.

Furthermore, Sign Language Production (SLP) is a critical research domain with sig-
nificant potential to positively impact signing communities. Sign language technologies
offer various applications such as documenting endangered sign languages, providing edu-
cational tools for sign language learners, enabling information retrieval from sign language
videos, developing personal assistants responsive to sign languages, offering real-time au-
tomatic sign language interpretations, and more.

1.2.2 Technical motivation

While research on translating Sign languages into spoken languages has made signifi-
cant strides in recent years [6, 7, 8, 9, 10, 11], the translation of spoken languages into Sign
languages, known as Sign Language Production (SLP), remains a formidable challenge
[12, 13, 14, 15]. One reason for the limited progress in SLP is the misconception that deaf
individuals are proficient in reading spoken language and do not require translation into
Sign language. Another challenge is the scarcity of publicly available methods serving as
baselines for further research, making synthesis, evaluation, and comparison difficult for
subsequent studies to build upon and extend. Consequently, current SLP research is still
in its infancy, with few publicly accessible models and evaluation criteria.

From a technical perspective, Sign Language Production (SLP) presents a unique
array of challenges due to the complexity and richness of sign languages. This task
involves both Natural Language Processing (NLP) and Computer Vision (CV) techniques.
Unlike spoken languages, sign languages rely on visual-gestural modalities, necessitating
specialized techniques for translation.

This project aims to confront these technical challenges by investigating the efficacy
of various public SLP approaches, with the goal of advancing the state-of-the-art in SLP
technology and contributing to the development of more accurate and efficient translation
systems for sign languages.

1.3 Project Objectives and Chapter Overview

The project aims to experiment with publicly available models for the Sign Language
Production (SLP) task to evaluate and compare their performance. The goal is to pro-
vide essential insights for future research and development efforts, addressing the current
limitations of existing models. Additionally, the project serves as a foundation for de-
termining the most effective approach to apply in real-world sign language translation
systems.

Following an in-depth exploration, three distinct approaches will be experimented
with, including:
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• Approach 1: Regressive Training with Progressive Transformers [12], which is the
first SLP model capable of translating from text to continuous 3D sign pose se-
quences in an end-to-end manner.

• Approach 2: Adversarial Training with Progressive Transformers [16], which em-
ploys a progressive transformer architecture with a conditional adversarial discrim-
inator, supplementing the regression loss with an adversarial loss.

• Approach 3: Non-Autoregressive Transformers with Gaussian Space [17], where
the non-autoregressive Transformer translates the source sentence to the target
sign pose distributions based on Variational Autoencoder in Gaussian space.

These three methods were chosen because they represent different approaches to
the problem, which, while familiar in conventional machine translation tasks, are rarely
directly compared in sign language translation research. Furthermore, there is a scarcity
of public models for SLP, and these three methods are among the few with published
code, often serving as benchmarks for newer approaches.

It’s noteworthy that sign language translation typically involves an intermediary no-
tation system such as Gloss, HamNoSys, or SignWriting, ... (mentioned in Section 2.2)
and the aforementioned approaches offer options to translate through or combine with
Gloss data to enhance performance. However, in this project, the models are trained and
evaluated directly without using Gloss notation. This decision stems from the observation
that end-to-end translation yields better performance compared to approaches involving
intermediary sub-tasks, such as translating Text to Gloss and then Gloss to Pose. This is
attributed to the richness of information available in spoken language compared to Gloss
representations, which may act as a bottleneck, potentially leading to the loss of contex-
tual information from the source text [12]. Moreover, datasets with Gloss annotation are
scarce, costly to label, and require specialized knowledge of sign language, making them
less practical.

It’s worth noting that in this research, sign language is represented in the form of 3D
sign pose sequences, advantageous for direct video generation as the final animation can
be performed by an ordinary avatar. This approach not only enhances training results by
reducing data dimensions but also facilitates real-world applications, including real-time
scenarios. Additionally, output sign poses serve well for precise and specific research
purposes.

All poses in the research encompass both manual and non-manual features, as non-
manual features are crucial for understanding sign language, providing grammatical syn-
tax, context, and emphasis. Saunders and his colleagues has demonstrated significantly
higher performance when training with both manual and non-manual features compared
to training with manual features alone [16].

Furthermore, the project focuses on researching and evaluating models for American
Sign Language (ASL), which is the predominant sign language of deaf communities in
the United States and Anglophone Canada. ASL is a complete visual language expressed
through both manual and non-manual features. Therefore, all evaluation studies in this
project are conducted on the How2Sign dataset, a high-quality ASL dataset that meets
the project’s requirements.
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In summary, the project conducts research and comparison of three different ap-
proaches to the SLP problem on American Sign Language datasets. Specifically, the
project’s contributions include:

1. Experimentation with three different SLP approaches on the How2Sign dataset,
including regressive training, adversarial training, and non-autoregressive modeling.

2. Comparison and analysis of the performance of these SLP approaches.

3. Provision of insights and recommendations for future research and development
efforts in the field of SLP, aiming to enhance communication accessibility for indi-
viduals who use sign language.

4. Development of a sign language translation system in the form of a demo.

The structure of this report is as follows: Chapter 2 offers background information
on sign language. In Chapter 3, we delve into existing literature on sign language pro-
cessing, production, and datasets. Chapter 4 provides an overview of the project. Details
regarding data preprocessing, the architecture of the three approaches, implementation
setup, and metric evaluation are covered in Chapter 5. Chapter 6 presents both quan-
titative and qualitative results. In Chapter 7, we discuss these findings, offer insights,
limitations and propose recommendations for future research. Finally, Chapter 8 wraps
up the report. Additionally, Appendix A contains information of the demo for this thesis
project.
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Chapter 2

BACKGROUND

The Background chapter serves as the foundational framework upon which the en-
tirety of this thesis is built. Its primary aim is to provide a comprehensive understanding
of sign language, encompassing both its linguistic characteristics and modes of repre-
sentation. By delving into the intricate components of sign language linguistics and its
various forms of representation, this chapter sets the stage for a deeper exploration of the
research topic.

2.1 Sign Language Linguistics

Signed languages are structured similarly to spoken languages, with elements like mor-
phological, phonological, syntactic, and semantic structures. Instead of talking, people
use their hands, face, and body to communicate. This paper will highlight the linguistic
attributes of signed languages that researchers need to incorporate into their models.

2.1.1 Phonology

Signs are made up of basic components that include manual aspects like hand shape,
palm direction, location, contact, movement path, and localized movement, as well as
non-manual aspects like eye openness, head motion, and body positioning [18, 19, 20, 21].
Both signed and spoken languages don’t always use all possible sounds, and the sets of
sounds or features in two languages might not match entirely. Each language also follows
rules about how these features can be combined.

2.1.2 Simultaneity

Despite taking approximately twice as long to produce compared to an English word,
an ASL sign transmits information at a similar rate to spoken English [22]. Signed
languages address the slower production pace of signs through simultaneity, utilizing
multiple visual cues simultaneously to convey various information [21]. For instance, a
signer might sign ”cup” with one hand while pointing to the actual cup with the other
to indicate ”that cup.” Analogous to intonation in spoken languages, facial expressions
and body posture convey additional emotional nuances [23, 24]. Facial gestures can alter
adjectives, adverbs, and verbs; a nod can negate a phrase or sentence; eye gaze can help
identify referents.
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2.1.3 Referencing

In conversation, signers can introduce subjects either by pointing to their actual
positions in space or by designating a specific area in the signing space to represent
a subject not physically present, and then indicating that area to refer to it [25, 26].
Furthermore, signers establish connections between subjects anchored in the signing space
by using directional signs or physically embodying the subjects through shifts in body
position or eye gaze [27, 28]. Spatial references also influence grammatical structure,
as the direction of a verb may depend on the placement of the subject and/or object
references [29, 30]. For example, a directional verb might originate from the location of
the subject and conclude at the location of the object. While the relationship between
subjects and verbs in spoken language tends to be arbitrary, in signed languages, subject
relationships are typically rooted in spatial context. Visual space is extensively utilized
to ensure clarity in referencing.

In sign language, classifiers or depicting signs [31, 32, 33] are used to describe ref-
erents. These signs, often one-handed and flexible in movement, convey details about
the referent’s characteristics, movement, and relationships with other entities [23]. For
instance, to describe a car swerving and crashing, a signer might use a hand classifier for
a vehicle, gesture swerving, and simulate a crash with another entity in space.

Signers employ role shift [34] to quote others, physically embodying their characteris-
tics. For example, in recounting a dialogue between a tall and a short person, the signer
may shift position and adjust their gaze accordingly.

2.1.4 Fingerspelling

Fingerspelling comes from how signed languages interact with written forms of spoken
languages [35, 36, 37]. It involves using hand movements to spell out words or letters.
While it’s often used for names, places, or new ideas from spoken language, it’s also
become a regular part of signed languages [38, 39].

2.2 Sign Language Representations

Representing signed languages poses a major hurdle for SLPs. Unlike spoken lan-
guages, signed languages lack a widely accepted written form. Since signed languages
rely on visual and gestural communication, video recording is the most direct method
to document them. However, videos contain excessive information for modeling and are
costly to produce, store, and share. Hence, researchers have been striving to find a more
efficient, lower-dimensional representation.

2.2.1 Videos

Videos are the most direct way to represent signed languages, effectively capturing
the information conveyed through signing. However, one significant drawback is their
high dimensionality: Videos often contain more data than necessary for modeling, mak-
ing them costly to store, transmit, and encode. Anonymizing raw videos, crucial for
protecting privacy, remains a challenge, hindering their widespread public availability
[40].
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2.2.2 Skeletal Poses

Videos can be simplified into skeleton-like wireframes or meshes, showing joint loca-
tions. This helps estimate human pose from video data, determining body configuration
over time. While motion capture equipment offers high-quality results, it’s costly and in-
vasive. As a result, pose estimation from videos has become more popular [41, 42, 43, 44].
Skeletal poses offer a less complex and partially anonymized representation of the body,
with minimal information loss. However, they’re not well-suited for most NLP models
due to their continuous, multidimensional nature.

2.2.3 Written notation systems

Different systems represent signs visually, with some using linear writing and oth-
ers employing two-dimensional graphemes. Despite various proposed universal [45, 46]
and language-specific notation systems [47, 48, 49] no single writing system has been
widely adopted by any sign language community. This lack of standardization makes it
challenging to share and integrate resources across projects. The figure above shows two
universal notation systems: SignWriting [45], a two-dimensional pictographic system, and
HamNoSys [46], a linear sequence of graphemes designed for machine readability.

2.2.4 Gloss

Glosses transcribe signed languages sign-by-sign, assigning each sign a unique se-
mantic identifier. While several sign language corpus projects offer guidelines for gloss
annotation [50, 51, 52], a standardized protocol for gloss annotation is yet to be estab-
lished. Linear gloss annotations have been criticized for their imprecise representation
of signed language, as they fail to capture the simultaneous expression of information
through various cues like body posture, eye gaze, or spatial relations. This loss of infor-
mation can significantly impact the performance of downstream tasks in SLP [53].



Final Capstone Project 17 of 53

Chapter 3

RELATED WORKS

The Related Works chapter offers a thorough examination of current research and
advancements in sign language processing. It delves into key areas such as sign lan-
guage recognition, translation, and production, particularly emphasizing the translation
of video-based sign language into text-based sequences. Additionally, recent progress
has been made in addressing sign language datasets. The objective of this chapter is to
scrutinize and assess the methodologies and datasets utilized in prior research endeavors.

3.1 Sign Language Processing

Sign language processing encompasses various research directions, including sign lan-
guage recognition (SLR), sign language translation (SLT), sign spotting [6, 54, 55, 56],
and sign language retrieval [57, 58]. SLR aims to transcribe sign videos into their con-
stituent glosses, which can be categorized into isolated SLR (ISLR) [59, ?, 60, 61, 62]
and continuous SLR (CSLR) [63, 64, 65]. ISLR focuses on predicting the gloss of an
isolated sign, while CSLR recognizes sequences of signs in videos and generates corre-
sponding gloss sequences. SLT goes a step further by translating sign languages into
spoken languages. Recent works have formulated SLT as a neural machine translation
problem [66, 8, 63, 67], utilizing visual encoders and language models. Inspired by the
success of transferring pre-trained language models to SLT [64], mBART [68] is adopted
as the Text2Gloss translator in this study.

3.2 Sign Language Production

Stoll et al. [14, 69] introduced the first deep SLP model, employing a three-step
pipeline. Initially, they established a mapping between sign glosses and skeleton poses
via a lookup table for Grapheme-to-Phoneme (G2P) conversion. Building upon this, B.
Saunders et al. [12] proposed the progressive transformer, utilizing an encoder-decoder
architecture to learn the mapping and generate sign poses in an autoregressive manner
during inference. Subsequently, B. Saunders et al. [70] introduced a Mixture Density
Network (MDN) to generate pose sequences conditioned on sign glosses, leveraging a
GAN-based method [71] to produce photo-realistic sign language videos. They further
enhanced spoken language to sign language translation using an autoregressive trans-
former network and incorporating gloss information for additional supervision [13], or
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applied adversarial learning [16]. Additionally, they proposed a Mixture of Motion Prim-
itives (MoMP) architecture to combine distinct motion primitives for continuous sign
language sequence production. In a subsequent work, B. Saunders et al. [72] introduced
a Frame Selection Network (FS-NET) to improve temporal alignment and SIGNGAN,
a pose-conditioned human synthesis model for generating photo-realistic sign language
videos directly from skeleton poses. Despite achieving state-of-the-art results, they re-
lied on an additional sign language dictionary [73], limiting direct comparison of their
findings. In contrast, Huang et al. [74, 17] proposed a non-autoregressive model to si-
multaneously generate sign pose sequences, addressing the error accumulation issue by
employing monotonic alignment search to determine the alignment lengths of each gloss.

3.3 Sign Language Dataset

A significant obstacle hindering progress in sign language research has been the
scarcity of large-scale datasets [75]. Early datasets were primarily focused on isolated
sign recognition, containing only a limited vocabulary [76, 61, 62, 77, 78]. However,
to address the challenges of sign language recognition and translation in the context of
complete sentences, several continuous sign language datasets have been developed. Ex-
amples include RWTH-BOSTON-50 [79], Dreuw et al. [80], SIGNUM [81], BSL [82], and
the DictaSign Corpus, which provided sentence-level annotations in multiple languages
[83, 84, 85]. Despite the introduction of additional datasets featuring expanded sign sets
[86, 61, 62], the importance of continuous sign language for translation and production
cannot be overstated.

Among the pioneering continuous sign language datasets is S-pot [87], which offered
over 1,000 signs of Finnish sign language in a controlled environment. Another signifi-
cant dataset, RWTH-Phoenix [7], comprised TV clips with German sign language and
remains widely used for sign language translation and production. Similarly, BSL-1K
[8] assembled a collection of British sign language signs used in everyday conversations,
totaling 1,000 signs. More recently, Duarte et al. introduced How2Sign [88], a large-scale
dataset of American Sign Language (ASL) aligned with speech signals from the How2
dataset. How2Sign boasts a vocabulary of over 16,000 signs, captured over seventy-nine
hours of continuous sign language.
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Chapter 4

PROJECT MANAGEMENT PLAN

The Project Management Plan chapter serves as a comprehensive roadmap for the
successful execution of this thesis project. Within this chapter, an overview of the project
will be provided, followed by detailed information regarding the project’s objectives,
scope, and schedule.

4.1 Overview

This is the graduation project of a student majoring in Artificial Intelligence at FPT
University, Spring 2024 semester. The project information includes:

• Information about supervisors:

Full name Email Title

Supervisor 1 Nguyen Quoc Trung trungnq46@fe.edu.vn Mr.

Supervisor 2 Truong Hoang Vinh vinhth8@fe.edu.vn Dr.

Table 1. Project information. Supervisor information

• Information about the project team:

Full name Student ID Email Role in Group

Student 1 Ho Linh Chi SE150666 chihlse150666@fpt.edu.vn Leader

Table 2. Project information. Student information

4.2 Project Scope and Objectives

The objective of this project is to assess and analyze current Sign Language Produc-
tion (SLP) methodologies, particularly in the context of American Sign Language (ASL).
Three distinct SLP models were selected for experimentation, each representing a dif-
ferent approach. These models were trained and evaluated using the How2Sign dataset.
Additionally, a Minimum Viable Product (MVP) was developed as part of this graduation
project to enable real-time text-to-sign language translation, as outlined in Appendix A.
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Through the fulfillment of these objectives, the project aims to contribute to the
progression of SLP technology, ultimately fostering greater inclusivity in communication
for the Deaf and Hard-of-Hearing communities.

4.3 Project Schedule

Table 3 provides an overview of the timeline for this project. The schedule outlines
the estimated durations for each phase, which may be subject to adjustments based on
project progress and requirements.

Task name Priority Start date End date Status

Find documents High 01/01/2024 07/01/2024 Done

Review papers Medium 05/01/2024 14/01/2024 Done

Review and analyze public dataset Low 15/01/2024 21/01/2024 Done

Research on models and architectures High 22/01/2024 04/02/2024 Done

Find and choose 3 different approaches High 05/02/2024 11/02/2024 Done

Experiment models High 13/02/2024 10/03/2024 Done

Compare results High 11/03/2024 17/03/2024 Done

Write report High 18/03/2024 15/04/2024 Done

Review Report Medium 15/04/2024 18/04/2024 Done

Create Web demo Low 18/03/2024 31/03/2024 Done

Revision Medium 19/04/2024 24/04/2024 Done

Table 3. Project schedule. Overview of the timeline for the Sign Language Translation
Systemp thesis
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Chapter 5

MATERIALS AND METHODS

The Materials and Methods section in this thesis acts as a comprehensive guide
outlining the research methodology implemented to achieve the project’s objectives. It
delineates the data preprocessing steps, architectural designs of three approaches, im-
plementation setup, evaluation metrics, and techniques utilized throughout the study.
This section aims to enhance transparency and reproducibility in the research process
by providing detailed insights into the experimental setup, data collection procedures,
and analytical methods. By meticulously documenting these aspects, the section ensures
the robustness and rigor of the research methodology. Additionally, it facilitates future
replication of the study, thereby contributing to the advancement of knowledge in the
field.

5.1 Data

How2Sign [88] is considered one of the most extensive datasets available in the realm
of Sign Language, with a particular focus on American Sign Language (ASL). This multi-
modal and multi-view dataset comprises over 80 hours of instructional videos covering a
diverse range of topics. Derived from the renowned How2 dataset [89], a publicly available
multi-modal dataset for vision, speech and natural language understanding, How2Sign
offers ASL translations of more than 2500 instructional videos, each meticulously aligned
with English transcripts. Enriched with annotations including category labels, English
transcripts, gloss annotation, speech, depth data, and automatically extracted 2D body
poses with OpenPose [43], it provides a comprehensive resource for research and devel-
opment in ASL processing.

This study primarily utilized videos and their subtitles for both training and evaluat-
ing the models. Video clips were segmented based on timestamps provided by How2Sign

train val test

Original 31,128 1,741 2,322

Final 30,942 1,734 2,341

Table 4. How2Sign Dataset Overview. Statistics of the original and final versions of
the How2Sign dataset.
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Figure 1. Data preprocessing pipeline. Left to right: original image, original pose
extracted by Mediapipe Holistic, pose removed unnecessary landmarks, pose aligned hand
wrists with body wrists, and final pose after transfering appearance.

(realigned version), combined with subtitles to create a comprehensive set of sentence-
level data. As per the original paper, there are 31,128, 1,741, and 2,322 video-subtitle
pairs in the training, validation, and test sets, respectively. However, upon initial ex-
amination, a small portion of the manually realigned subtitles were found to be invalid
(i.e. exhibiting no temporal overlap with the video or falling outside the video duration).
Additionally, the number of data in the manually realigned file differs from that stated in
the original paper. After filtering and processing, the final splits utilized in this project
were: 30,942 training videos, 1,734 validation videos, and 2,341 test videos. Table 4
presents the quantity of data in both the training, validation, and test sets before and af-
ter processing. Notably, although the signing videos encompass multi-view perspectives,
this project utilized only the frontal view set due to resource limitations and project
implementation timelines.

5.1.1 Data Preprocessing

In this study, the collected ground truth (GT) sign pose sequences were employed by
extracting estimated pose landmarks from each video utilizing Mediapipe Holistic [90].
This state-of-the-art pose estimation framework accurately determines the 3D coordinates
of various keypoints on the human body, encompassing the face, hands, and body. Each
frame yielded 543 landmarks (33 pose landmarks, 468 face landmarks, and 21 hand
landmarks per hand) extracted for a single person. Subsequently, the extracted 3D
landmarks underwent other preprocessing steps, facilitated by the pose-format library
[91], to generate the final training data. The complete data preprocessing pipeline is
outlined in Figure 1. Other processing steps encompass:

1. Mask unnecessary landmarks. Due to the limited contribution of legs, the
overlap between body hands and hands, and the abundance of facial landmarks
(totaling 468 points), there was a risk of diminishing performance. To address this,
the project implemented a filtering process to exclude landmarks associated with
legs and body hands, while retaining only the crucial facial landmarks necessary
for conveying emotions and mouth shape. Following this reduction, each individual
was represented by a total of 178 remaining landmarks.

2. Align hand wrists with body wrists. Following the removal process, a gap
emerged between hand wrists and body wrists. To address this issue, the project
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Figure 2. Pose anonymization procedure. Left to right: first frame, the reference
appearance, pose brought back the hands, pose brought back the wrists.

resolves it by substituting body wrists with the corresponding hand wrists.

3. Pose Normalization. In this study, the pose keypoints are normalized using the
pose shoulders to ensure uniform scale across all poses. The center of a pose is
defined as the neck, determined by computing the average midpoint between the
shoulders across all frames. Subsequently, all keypoints are translated, shifting the
center to (0, 0), and the pose is scaled so that the average distance between the
shoulders equals 1.

4. Pose Anonymization. To remove identifying information from sign language
poses and ensure data consistency for improved training efficiency, a pose anonymiza-
tion process is implemented. This process involves assuming that the first frame
solely depicts the person’s appearance, which is then removed from subsequent
frames. Subsequently, a reference appearance is added. This study employed the
reference appearance, determined as the mean of sign language poses calculated by
[92]. Figure 2 illustrates the process of anonymization.

5.2 Methods

In this section, the architecture of three approaches will be elucidated. Given a spoken
language sentence X = (x1, ..., xT ) with T words, the models generate a sequence of signs
with Ŷ = (ŷ1, ..., ŷU) to closely resemble the ground truth Y = (y1, ..., yU) with U time
steps. Each sign pose frame, yu, is represented as a continuous vector comprising the 3D
joint positions of the signer.

5.2.1 Regressive Training with Progressive Transformers

The Autoregressive approach is embodied in the Progressive Transformers [12], chosen
as the pioneer Sign Language Production (SLP) model capable of translating text into
continuous 3D sign pose sequences in an end-to-end fashion. Developed in 2020 by Ben
Saunders and colleagues [12], it marks a significant advancement in the field.

Due to the representation of sign language with continuous joint positions [14, 93],
traditional symbolic Neural Machine Translation (NMT) architectures like Transformers
cannot be directly applied without adaptation. This necessity led to the development
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of a novel architecture: the progressive transformer-based architecture. It facilitates
translation from symbolic input to a continuous output representation, as illustrated in
Figure 3. To facilitate sequence length prediction of the continuous output, the authors
introduce counter decoding, allowing the model to monitor sequence generation progress,
hence the name Progressive Transformers. This approach also empowers timing control
during inference, resulting in stable sign pose outputs, even in scenarios with no predefined
vocabulary. In the following part of this section, a detailed description of the Progressive
Transformers architecture is provided.

Progressive Transformers

Progressive Transformers perform translation from symbolic text domains to contin-
uous sign pose sequences, depicting the motion of a signer while producing a sentence
in sign language. The model’s task is to generate skeleton pose outputs capable of both
accurately translating the provided input sequence and realistically representing a sign
pose sequence. First, it embeds the source tokens, xt, through a linear symbolic em-
bedding layer and joint values, yu, through a linear continuous embedding layer, allowing
similar content to be closely represented in the dense space. The symbolic and continuous
embedding, involving weights W and bias b, can be expressed as:

wt = W x · xt + bx

ju = W y · yu + by
(1)

where wt is the vector representations of the source tokens xt, yu is the embedded 3D
joint coordinates of each frame yu.

Transformer networks lack inherent awareness of word order, as they receive all source
tokens simultaneously, devoid of positional cues. To address this and introduce temporal
ordering, a temporal embedding layer is applied after each input embedding. For the
symbolic transformer, positional encoding [94] is implemented as:

ŵt = wt + PositionalEncoding(t) (2)

where PositionalEncoding is a predetermined sinusoidal function that depends on the
relative sequence position, denoted by t.

With the sign poses, once they are embedded, a counter embedding layer is applied to
them as temporal embedding (referred to as CE in Figure 3). The counter, c, ranges be-
tween 0 and 1, denoting the frame position relative to the total sequence length. The joint
embeddings, ju, are concatenated with their corresponding counter value, cu, expressed
as:

ĵu = [ju, CounterEmbedding(u)] (3)

where CounterEmbedding is a linear projection of the counter value for frame u.
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Figure 3. Architecture details of Progressive Transformers. (PE: Positional En-
coding, CE: Counter Embedding, MHA: Multi-Head Attention).

During each time-step, counter values are forecasted alongside the skeleton pose, as
illustrated in Figure 4. The sequence generation process halts once the counter attains a
value of 1. This approach, termed Counter Decoding, allows for monitoring the progress
of sequence generation and offers a means to anticipate the sequence’s conclusion without
relying on a tokenized vocabulary.

The counter furnishes the model with insights into the duration and speed of each sign
pose sequence, influencing the timing of signs. During inference, the sequence generation
process is guided by substituting the predicted counter value, ĉ, with the ground truth
timing information, ĉ∗, thereby ensuring the production of a stable output sequence.

The Progressive Transformer adopts an encoder-decoder architecture. Within the
symbolic encoder (ES), there exists a stack of L identical layers, each comprising 2 sub-
layers. Commencing with the temporally encoded source embeddings, ŵt, a Multi-Head
Attention (MHA) mechanism initially generates a weighted contextual representation
by conducting multiple projections of scaled dot-product attention. This process aims
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Figure 4. An illustration of Counter Decoding. Demonstrate the concurrent pre-
diction of the sign pose, ŷu, and the counter, ĉu, where ĉu ∈ 0 : 1, and ĉu = 1.0 denotes
the end of the sequence.

to discern the relationship between each token of the sequence and its relevance at each
time step within the entirety of the sequence. Formally, scaled dot-product attention
yields a vector combination of values, V , weighted by relevant queries, Q, keys, K, and
dimensionality, dk:

Attendtion(Q,K, V ) = softmax(
QKT

√
dk

)V (4)

The MHA module stacks parallel attention mechanisms in h different mappings
of the same queries, keys, and values, each equipped with distinct learned parameters.
This design facilitates the generation of diverse representations of the input, capturing
complementary information across different sub-spaces. The outputs of each head are
subsequently concatenated and projected forward through a final linear layer, expressed
as:

MHA(Q,K, V ) = [head1, ..., headh] ·WO (5)

where headi = Attention(QWQ
i , KWK

i , V W V
i ) and WO,WQ

i ,WK
i and W V

i are weights
related to each input variable.

The outputs from the MHA mechanism are then passed into the second sub-layer,
which involves a non-linear feed-forward projection. To facilitate training, a residual
connection [95] and subsequent layer normalization [96] are applied around each of these
sub-layers. The final output of the symbolic encoder can be expressed as:

rt = ES(ŵt|ŵ1:T ) (6)

where ES is the symbolic encoder and rt is the encoded source representation.
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The progressive decoder (DP ) operates as an auto-regressive model, generating a sign
pose frame and its corresponding counter value at each time-step, as explained previously.
The progressive decoder generates continuous sequences characterized by sparse repre-
sentation within a vast continuous subspace. The joint embeddings, ĵu, concatenated
with the counter, serve as the target input, encapsulating the sign information for each
frame.

Initially, a self-attention Multi-Head Attention (MHA) sub-layer is applied, incor-
porating target masking to prevent attending to future positions. Subsequently, another
MHA mechanism is utilized to transform the symbolic representations from the encoder
into the continuous domain of the decoder, facilitating the learning of crucial alignments
between spoken and sign languages. Following this, a final feed-forward sub-layer is em-
ployed, with each sub-layer featuring a residual connection and layer normalization, as
previously described. Unlike typical models, no softmax layer is utilized, as the skeleton
joint coordinates can be directly regressed without the need for stochastic prediction.
The progressive decoder output is represented as:

[ŷu+1, ĉu+1] = DP (ĵu|ĵ1:u−1, r1:T ) (7)

where ŷu+1 denotes the 3D joint positions representing the produced sign pose of frame
u + 1, while ĉu+1 represents the respective counter value. The decoder is trained to
generate one frame at a time until the predicted counter value reaches 1, signaling the
end of the sequence. Upon completing the full sign pose sequence, the model undergoes
end-to-end training utilizing Mean Squared Error (MSE) loss, calculated between the
predicted sequence, ŷ1:U , and the ground truth, y∗1:U :

LMSE =
1

U

u∑
i=1

(y∗1:U − ŷ1:U)2 (8)

The outputs of the progressive transformer, ŷ1:U , represent the 3D skeleton joint
positions of each frame within a produced sign sequence.

5.2.2 Adversarial Training with Progressive Transformers

Expanding on the foundation laid by the Progressive Transformer architecture [12],
Saunders and colleagues introduced Adversarial Training for Multi-Channel SLP [16].
This innovative approach incorporates a conditional adversarial discriminator alongside
the regression loss, aiming to mitigate the issues of regression to the mean and prediction
drift inherent in the original architecture.

Sign language encompasses subtle and precise movements of both manual and non-
manual components. However, existing SLP models often suffer from regression to the
mean, leading to under-articulated output characterized by average hand shapes due to
the variability of joint positions. To tackle this challenge, the authors propose an adver-
sarial training mechanism for SLP. This method utilizes the Progressive Transformer ar-
chitecture described earlier as a Generator, denoted as G, to generate sign pose sequences
from input text. To ensure the production of realistic and expressive sign language, a
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Figure 5. An overview of Adversarial Multi-Channel SLP. Featuring a Conditional
Adversarial Discriminator assessing the realism of Sign Pose Sequences generated by an
SLP Generator.

conditional adversarial Discriminator, D, is introduced. This discriminator learns to dis-
tinguish between real and generated sign pose sequences conditioned on the input spoken
language. Both models are then co-trained in an adversarial manner, resulting in mutu-
ally improved performance. An overview of this approach is shown in Figure 5. Formally,
the adversarial training framework for SLP can be defined as a minimax game, with G
striving to minimize the following equation while D aims to maximize it:

min
G

max
D

LGAN(G,D) = E[logD(Y ∗|X)] + E[log(1 −D(G(X))|X))] (9)

where Y ∗ = y∗1:U is the ground truth sign pose sequence, G(X) equates to the produced
sign pose sequence, Ŷ = ŷ1:U , and X is the source spoken language.

In the remainder of this section, a comprehensive overview of both the Generator and
Discriminator will be presented.

The Generator

The Generator, denoted as G, is trained to generate sign pose sequences based on a
given source spoken language sequence, incorporating the progressive transformer within
a GAN framework. Unlike the conventional GAN setup, this implementation demands
that sequence generation be conditioned on a particular source input. Consequently, the
traditional noise input [97] is omitted, and a sign pose sequence is generated based on
the source sequence, drawing inspiration from conditional GANs [98].

During training, G is trained using a combination of loss functions, comprising the
regression loss LReg - the Mean Squared Error (MSE) loss functions of the Progressive
Transformer (Equation 8), and the adversarial loss LG

GAN (Equation 9). The total loss
function is formulated as:

LG = λRegLReg(G) + λGANLG
GAN(G,D) (10)
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Figure 6. Details of our Conditional Adversarial Discriminator architecture.
The sign pose sequence Y1:U is concatenated with the source spoken language sequence
X1:T and mapped to a single scalar, dp.

where LG
GAN represents the latter component of Equation 9 and λReg, λGAN determine

the relative importance of each loss function during training. The regression loss offers
specific guidance on generating the given input, while the adversarial loss guarantees
realistic signer motion. Together, these losses collaborate to achieve both accurate and
expressive sign production.

The Discriminator

A conditional adversarial Discriminator, denoted as D, is employed to distinguish
between generated sign sequences, Ŷ , and ground-truth sign sequences, Y ∗, conditioned
on the source spoken language sequence, X. The objective of D is to assess the realism of
sign production, thereby guiding G towards producing expressive and articulate outputs.
Additionally, conditioning on the source sequence enables D to simultaneously evaluate
the translation accuracy of the source-target sequence pair, (X, Y ). An overview of the
discriminator architecture is illustrated in Figure 6.

For every pair of source-target sequences, (X, Y ), whether they are generated or real
sign pose sequences, the goal of the discriminator is to generate a single scalar, dp ∈ (0, 1),
which represents the probability that the sign pose sequence originates from the ground-
truth data, Y ∗:

dp = P (Y = Y ∗|X, Y ) ∈ (0, 1) (11)

To accommodate the variable frame lengths of the sign sequences, padding is applied
to standardize them to a fixed length, denoted as Umax, representing the maximum frame
length observed in the target sequences within the data:

Ypad = [y1:U ,∅T :Tmax ] (12)

where Ypad is the sign pose sequence padded with zero vectors ∅ to facilitate convolutions
on a tensor of fixed size. To condition the discriminator on the source spoken language,
we initially embed the source tokens using a linear embedding layer. Dealing with variable
sequence lengths, these embeddings are also padded to a fixed length, denoted as Tmax,
which represents the maximum source sequence length:
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Xpad = [WX ·X1:T + bX ,∅T :Tmax ] (13)

where WX and bX represent the weight and bias of the source embedding, respectively,
and ∅ denotes zero padding. As depicted in the center of Figure 2, the source repre-
sentation is subsequently concatenated with the padded sign pose sequence to form the
conditioned features, denoted as H:

H = [Ypad, Xpad] (14)

To assess the realism of the sign pose sequence, the discriminator extracts meaningful
representations through multiple layers of 1D CNNs. These convolutional filters traverse
the sign pose sequence, analyzing the local context to gauge the temporal coherence of the
signing motion. This approach proves more effective than employing a frame-level dis-
criminator, as it evaluates the consistency of hand shapes over a larger temporal window
rather than focusing on individual frames. Leaky ReLU activation [99] is applied after
each layer to foster healthy gradients during training. Finally, a feed-forward linear layer
and sigmoid activation project the combined features to a single scalar, dp, representing
the probability that the sign pose sequence is real.

The discriminator is trained by maximizing the likelihood of generating dp = 1 for
real sign sequences and dp = 0 for generated sequences. This objective can be formalized
as maximizing Equation 9, leading to the loss function LD = LD

GAN(G,D).

5.2.3 Non-Autoregressive Transformers with Gaussian Space

Previous methods (5.2.1 and 5.2.2 approaches) focus on maximizing the conditional
probability P (Y |X). However, due to the curse of dimensionality [100] and the significant
disparity in length between X and Y , an autoregressive approach proves ineffective.

To address these challenges from a foundational standpoint, a novel SLP model,
Non-Autoregressive Sign Language Production with Gaussian space (NSLP-G) [17], is
proposed. This model takes a distinct approach from existing SLP models by employing
two distinct phases: constructing a pose generator and mapping from a source sentence
to target sign pose distributions. In Phase I, Variational Autoencoder (VAE) is utilized
for self-supervised learning on the sign poses. Following this learning phase, the decoder
is capable of generating a sign pose in Gaussian space, thus serving as the Gaussian
Pose Generator (GPG). In Phase II, a non-autoregressive Transformer acts as the Gaus-
sian Seeker (GS), translating the source sentence into the target sign pose distributions
based on the GPG. The key innovation of this model lies in furnishing the decoder with
positional encoding and outputting the entire sign pose sequence at once.

In this method, direct regression is avoided, and instead, words X are mapped to sign
pose distributions Z, where Z = (z1, x2, ..., zt generates sign pose Y using a generator
g(·). This formulation can be expressed as:

P (Z|X), g(Y |Z), zi ∈ N(0, 1) (15)
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Figure 7. An overview of the NSLP-G model. Comprising two phases for gener-
ating sign poses based on a given source sentence. Phase I: VAE is utilized to serve as
Gaussian Pose Generato (GPG). The encoder produces µ and σ, and then employs a
reparameterization trick to sample z following N(0, 1). The decoder reconstructs ŷ using
z. Phase II: To generate a sequence of z, a Transformer-equipped GPG is employed to
produce a sequence of z. To achieve non-autoregressiveness, autoregressive connections
are eliminated from the decoder, and only positional encodings (PE) are utilized as in-
puts.

To maximize P (Z|X) and g(Y |Z), the authors employ Transformer and Variational
Autoencoder (VAE), respectively. The specifics of each method are covered in the sub-
sequent section.

Gaussian Pose Generator with VAE

In Phase I, depicted in Figure 7(a), this method utilized VAE, a widely adopted
technique for generative tasks [101, 102, 103, 104, 105], to acquire GPG. VAE is trained to
generate a sign pose ŷ that closely resembles the ground truth sign pose y. It comprises a
simple architecture with a sign pose encoder encsp and decoder decsp akin to Autoencoder
(AE) [106]. The encoder processes a sign pose y and encodes it into latent space , while
the decoder reconstructs a sign pose from the latent space zsp. The encoder and decoder
can be represented as follows:

encsp(y) = qsp(zsp|y), decsp(zsp) = psp(y|Zsp) (16)

where qsp(zsp|s) and psp(s|zsp) are the posterior distributions for the encoder and decoder,
respectively.

VAE employs a reparameterization trick to sample the latent vector zsp from the
output of the encoder, allowing the sign pose y to be projected into Gaussian space. This
reparameterization trick can be expressed as follows:
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zsp = µsp + σsp ⊙ ε, where ε ∈ N(0, 1) (17)

where µsp and σsp represent the mean and variance of the sign pose distribution, respec-
tively; ε denotes an auxiliary independent random variable; and ⊙ signifies element-wise
multiplication.

The loss function of VAE can be expressed as:

LV AE(y) = −Ezsp qsp(zsp|y)[logpsp(y|zsp)] + βKL(qsp(zsp|y)||psp(zsp)) (18)

where p(zsp) = N(0, 1) represents the prior distribution, and KL(·||·) denotes the
Kullback-Leibler (KL) divergence. The first term enables the model to encode the sign
pose y into the latent space zsp ∈ N(0, 1) for reconstruction. The Mean Squared Error
(MSE) loss was employed to guide the decoder to assume a Gaussian distribution. The
second term encourages the posterior distribution qsp(zsp|y) to closely align with the prior
distribution psp(zsp) Additionally, the authors introduce a variable weight β, defined by
KL cost annealing [101]. Following the learning process, the trained decoder decsp is
designated as the GPG (see Figure 7 (d)).

Gaussian Seeker with Non-Autoregressive Transformer

In Phase II, depicted in Figure 8, a Transformer is constructed in a non-autoregressive
manner and utilized as the Gaussian Seeker.

The Encoder employs the same Transformer architecture, comprising a stack of N
identical layers with Multi-Head Attention (MHA) and Feed-Forward layers. For more
detailed information about the Encoder, please refer to the section 5.2.1

The Decoder operates in a non-autoregressive manner, where the autoregressive mask
is removed. The P (Z|X) in Equation 15 can be represented as follows:

PNA(Z|X) =
U∏

u=1

pgs(zu|x1:T ) (19)

where Z and W are a target sequence of sign poses and a source sentence, respectively.

These distributions can be computed simultaneously during inference. However, as
Equation 19 illustrates, there is no conditional probability to predict the length of the
target distribution sequence Z. The model generates a fixed sequence of sign poses while
utilizing a masked Mean Squared Error (MSE) loss, enabling the model to learn sign
poses of varying lengths. With this loss calculation, the model converges to an idle state
upon completion of inference.

In detail, the decoder utilizes positional encodings (PE) as a query, and the encoder’s
output serves as key and value inputs. Similar to the Encoder, the decoder consists of
the same number of layers, each containing Multi-Head Attention (MHA) self-attention,



Final Capstone Project 33 of 53

Figure 8. A depiction of the Transformer-based Gaussian Seeker. This module
comprises a transformer encoder and a non-autoregressive decoder. The encoder pro-
cesses the source sentence x0, ..., xt, ..., xT consisting of U words, while the decoder takes
positional encodings (PE) with a length of U as input to generate a sequence of latent
vectors Z following a Gaussian distribution.
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encoder-decoder attention, and feed-forward sub-layers. Ultimately, the decoder produces
a target sequence Z via a linear projection layer.

5.3 Implementation Setup

This project setup closely follows the methodology outlined in the original works. It’s
worth noting that the original Progressive Transformer [12] employed several data aug-
mentation techniques to address drift issues and significantly enhance the performance
of SLP models. However, in this work, the model was trained and evaluated on the
How2Sign [88] dataset without augmentation. This decision is motivated by the sub-
stantial volume of data available in the How2Sign dataset, which exceeds that of the
RWTH-PHOENIX-Weather-2014T [7] dataset. The absence of augmentation allows for
a direct comparison between models, serving the purpose of model comparison effectively.

5.4 Metrics

For evaluation, this work adopted the back-translation evaluation metric for SLP, as
introduced by Saunders et al. [12]. This involved utilizing a pre-trained SLT model [107],
which was trained on How2Sign dataset [88], to translate the generated sign pose se-
quences back into spoken language. This approach draws parallels to the use of inception
score for generative models [108], which employs a pre-trained classifier. Additionally,
BLEU and ROUGE scores were computed against the original input, with BLEU n-grams
ranging from 1 to 4 provided for comprehensive evaluation.
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Chapter 6

RESULTS

The Results chapter plays a crucial role in delivering the tangible outcomes of the
project, achieved through the real-world training and evaluation processes of the 3 ap-
proaches outlined in the preceding chapter (Chapter 5). Within this chapter, the re-
port will present experimental findings obtained from the research endeavors, with both
quantitative and qualitative results detailed comprehensively and lucidly. Through these
results, a comprehensive overview of the project’s discoveries, valuable perspectives, and
meaningful implications for further consideration and action will be provided in the sub-
sequent chapter 7 Discussion.

6.1 Quantitative Results

The project conducted experiments on three approaches to the Text-to-Pose task,
where a English sentence is inputted and the output consists of sequence of poses. The
experiments were carried out following the implementation setup in the original works,
using the back-translation evaluation metric (Section 5.4) to assess the performance of
the three models on the validation and test sets of the How2Sign dataset.

As depicted in Table 5, the Adversarial Training regime notably enhances performance
compared to the sole Progressive Transformers, which is trained solely with a Regression
loss. Non-Autoregressive approach demonstrates the highest performance, outperforming
the other two methods, which operate in an Autoregressive manner. The performance
enhancement achieved with NSLP-G highlights a distinct gap.

6.2 Qualitative Results

In this qualitative results section, the report presents two cases with distinct purposes.
The first case evaluates the three models using data with minimal representation of non-
manual features (facial expressions, head movements, etc.), while the second case focuses
primarily on evaluating data with strong non-manual features. Both cases utilize data
from the test set of the How2Sign dataset.

In the first case, as illustrated in Figure 9, all three approaches predominantly suc-
ceed in translating text into the sign pose sequence. It is observed that the autoregressive
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Models
VAL SET TEST SET

BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

Progressive
Transformers
[12]

13.24 17.12 22.63 34.19 36.51 12.35 15.61 21.98 32.71 34.93

Adversarial
Training with
PT [16]

14.25 18.29 24.06 35.61 38.04 12.97 16.33 22.89 33.45 34.90

NSLP-G [17] 15.83 20.15 26.14 37.34 40.05 15.71 18.84 26.93 37.62 39.52

Table 5. Performance comparison of three approaches to Text-to-Pose task.
Results indicate that the Adversarial Training regime significantly enhances performance
compared to the Progressive Transformers trained solely with a Regression loss. The
Non-Autoregressive approach, particularly NSLP-G, demonstrates the highest perfor-
mance, showcasing a distinct advantage over the other methods, which operate in an
Autoregressive manner.

approaches of the first two methods exhibit how the preceding pose influences the subse-
quent pose. For Progressive Transformers (PT), noticeable deviations from the original
pose begin from the fourth pose, resulting in a sequence with accumulating errors. Sim-
ilarly, with the second approach, Adversarial Training with PT, deviations start from
the seventh pose. Conversely, with the Non-Autoregressive approach, except for the fifth
and sixth sign poses, the generated poses exhibit a certain degree of accuracy. This indi-
cates that the non-autoregressive decoder effectively generates the next sign pose without
carrying forward errors from previously generated sign poses.

In the second case, the results somewhat corroborate the observations from the first
case. Regarding non-manual features, it can be observed that the models also partially
reproduce them, with NSLP-G leading in closest resemblance to the original. However,
due to limitations of pose type visualization, non-manual features are not as clearly
depicted compared to other data modalities like RGB images, as depicted in Figure 10.

It’s worth noting that in both cases, the models produce relatively close results to the
original videos. Nonetheless, discrepancies still exist in hand positions, finger orientations,
and so on.
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Figure 9. Visualization of generated sign pose sequences in Case 1 evaluation.
Observations indicate varying levels of accuracy and deviation from the original poses
across the models, highlighting the influence of autoregressive and non-autoregressive
approaches on pose generation.

Figure 10. Visualization of generated sign pose sequences in Case 2 evaluation.
Despite limitations in visualizing poses, certain non-manual features such as facial ex-
pressions and head movements are partially evident in the generated sequences. NSLP-G
exhibits the closest resemblance to the original non-manual features among the evaluated
models.
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Chapter 7

DISCUSSIONS

The Discussion chapter serves as a platform for thorough analysis, interpretation,
and exploration of the implications arising from the preceding chapters’ results 6. This
chapter delves into the nuances of the findings, uncovering both insights and limitations
inherent in the research process. Moreover, it explores potential avenues for future re-
search and practical applications, thereby fostering a more comprehensive understanding
of the subject matter and enriching the broader discourse within the field. By presenting
clear analyses, the project contributes significantly to the discussion surrounding sign
language production, promoting deeper understanding and providing insights for future
endeavors in this domain.

7.1 Interpretation and Implications

The project’s achievement of higher results compared to those achieved with orig-
inal papers is evident, which can be attributed to several factors, primarily the dif-
ferences in the training dataset and the back-translation evaluation metric. It’s worth
noting that How2Sign is a significantly larger and more diverse dataset compared to the
PHOENIX14T dataset used by other authors, models developed on this dataset also yield
higher results.

Regarding Regression Training (Approach 1) vs Adversarial Training (Approach 2),
the results indicate that the adversarial training regime improves performance over and
regression training with Progressive Transformers architecture, aligning with the conclu-
sions drawn in the original paper [16]. This demonstrates that incorporating a discrimina-
tor model in the second approach significantly enhances sign production comprehension.
As the discriminator is conditioned upon the source text, the generator is prompted to
accomplish both accurate translation and realistic production tasks simultaneously. Ad-
versarial training also yields a close correspondence to the ground truth video, alongside
accurate mouthings and head movements, with hand shapes becoming more expressive
and meaningful.

In the comparison between Autoregressive (Aprroach 1, 2) and Non-Autoregressive
(Approach 3), the results show that the non-autoregressive model (NSLP-G) outper-
forms the autoregressive models. The primary advantage of NSLP-G lies in its use of a
well-constructed Gaussian space to produce sign poses in parallel, enabling the model to



Final Capstone Project 39 of 53

generate the next sign pose without propagating errors from previously produced sign
poses. In contrast, autoregressive models’ output is significantly influenced by previous
poses, resulting in more discrepancies. The autoregressive model can obtain excellent
performance, while the non-autoregressive model brings fast decoding speed for infer-
enceHowever, autoregressive models produce sequences of increased articulation, with
smoother production. Nonetheless, post-processing may be required to achieve smooth
pose transitions. Another noteworthy point is that NSLP-G can generate more dynamic
and accurate sign poses, especially facial expressions, enhancing the realism of the sign
poses.

7.2 Limitations and Future Works

While the models have shown promising results, there are several limitations that
need to be addressed in future research. Firstly, the predicted hand shapes or movements
may not always be entirely accurate (see in Figure 9 and 10) due to missing or incorrect
keypoints in the processed data. Improving the quality of pose estimation is crucial to
enhancing the model’s ability to interpret poses correctly. Future work could focus on
refining hand pose estimation techniques to mitigate this issue.

In some cases, the models sometimes generate movements correctly but not precisely
in the right location due to local proximity. This inconsistency needs to be addressed to
ensure the accuracy of the generated sign sequences.

With evaluation metric, the back-translation has limitations in measuring the perfor-
mance of the generated sign poses. This is because it heavily relies on the performance
of the Sign Language Translation (SLT) model [107], which may not always be stable.
Developing a new and stable metric specifically tailored for Sign Language Production
(SLP) models could overcome this challenge.

Furthermore, the scarcity of data in sign language remains a significant obstacle.
Increasing the amount of data is essential for improving the performance of the models.
Future efforts should focus on expanding sign language datasets to enhance model training
and generalization.

Finally, the generated pose sequences produced in this project could serve as a founda-
tion for future research. These sequences could be utilized to animate avatars [109, 110] or
condition Generative Adversarial Networks (GANs) [111, 112], opening up opportunities
for more advanced applications in sign language processing.

Addressing these limitations and exploring future research directions will contribute
to the continued advancement of sign language processing technology, ultimately improv-
ing communication accessibility for the Deaf and hard-of-hearing communities.
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Chapter 8

CONCLUSIONS

In conclusion, this thesis has explored and evaluated various approaches to Sign
Language Production (SLP) with a focus on American Sign Language (ASL). Through
the experimentation and analysis of three different methods on the How2Sign dataset,
valuable insights have been gained into the strengths and limitations of each approach.
The results demonstrate that the Non-Autoregressive Transformers with Gaussian Space
approach proves to be highly effective, particularly with languages that exhibit high
complexity, such as sign language. Building upon these findings, the project developed a
real-time inference demo with the NSLP-G model.

The results of the study demonstrate the potential of SLP models in generating sign
language sequences from textual inputs. Despite the promising performance exhibited by
the models, several challenges and limitations have been identified, including inaccuracies
in hand shape and movement prediction, as well as the instability of back-translation eval-
uation metrics for SLP. Moving forward, future research efforts could focus on addressing
these challenges by improving hand pose estimation techniques, refining model architec-
tures, and developing more reliable evaluation metrics. Additionally, the expansion of
sign language datasets and the incorporation of 3D annotations could further enhance
the performance and applicability of SLP models.

Overall, this thesis contributes to the advancement of SLP technology and underscores
the importance of accessibility and inclusivity in communication for the Deaf and hard-
of-hearing communities. By continuing to innovate and refine SLP methodologies, the
field can progress towards a future where sign language communication is more accessible
and universally embraced.
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Appendix A

Demo

In this chapter, details about the demo application will be presented. It’s important
to note that the demo has been designed specifically to serve the purpose of the graduation
thesis.

A.1 UI Structure

The main UI will be divided into 2 parts:

1. The random sample panel.
1A. A text from a random chosen sample.
1B. A sign language video corresponding to the above mentioned text.

2. The translation panel.
2A. An text input for users to enter their text.
2B. A pose sign language translated from the above users’ text.

Figure 11. The demo UI structure. The UI includes 2 main parts.
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A.2 Use cases

A.2.1 Get a random sample of text and its sign language video

To get a random sample, users can click on the Random button. A random text and
its sign language video will be displayed on the right side panel.

Figure 12. Use case with Random button. Users click on Random button.

Figure 13. Use case with Random button. Result of user clicking the random button.

A.2.2 Duplicate the text to translate panel input

To duplicate the text of random sample to translate panel input, users can click the
Duplicate button.

A.2.3 Translate the text to sign language pose

After users have filled out the input on the translate panel either by duplicating
from random sample or by typing their own text, users can click the Translate button to
translate from text to sign language pose video.
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Figure 14. Use case with Duplicate button. Users click Duplicate button.

Figure 15. Use case with Duplicate button. Result of users clicking the Duplicate
button.

Figure 16. Use case with Translate button. Users click the Translate button.

A.2.4 Download the sign language pose video

After the pose video has been loaded successfully, users can click Download button
to download the pose video
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Figure 17. Use case with Translate button. Result of users clicking the Translate
button.

Figure 18. Use case with Download button. Users click the Download button.

Figure 19. Use case with Download button. Result of uses clicking the Download
button.
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[58] A. Duarte, S. Albanie, X. Giró-i Nieto, and G. Varol, “Sign language video retrieval
with free-form textual queries,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 14094–14104, 2022.

[59] H. Hu, W. Zhou, and H. Li, “Hand-model-aware sign language recognition,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 35, pp. 1558–
1566, 2021.

[60] S. Jiang, B. Sun, L. Wang, Y. Bai, K. Li, and Y. Fu, “Skeleton aware multi-
modal sign language recognition,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 3413–3423, 2021.

[61] H. R. V. Joze and O. Koller, “Ms-asl: A large-scale data set and benchmark for
understanding american sign language,” arXiv preprint arXiv:1812.01053, 2018.

[62] D. Li, C. Rodriguez, X. Yu, and H. Li, “Word-level deep sign language recognition
from video: A new large-scale dataset and methods comparison,” in Proceedings
of the IEEE/CVF winter conference on applications of computer vision, pp. 1459–
1469, 2020.

[63] Y. Chen, F. Wei, X. Sun, Z. Wu, and S. Lin, “A simple multi-modality transfer
learning baseline for sign language translation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5120–5130, 2022.

[64] Y. Chen, R. Zuo, F. Wei, Y. Wu, S. Liu, and B. Mak, “Two-stream network for sign
language recognition and translation,” Advances in Neural Information Processing
Systems, vol. 35, pp. 17043–17056, 2022.

[65] K. L. Cheng, Z. Yang, Q. Chen, and Y.-W. Tai, “Fully convolutional networks
for continuous sign language recognition,” in Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIV
16, pp. 697–714, Springer, 2020.

[66] N. C. Camgoz, O. Koller, S. Hadfield, and R. Bowden, “Multi-channel transformers
for multi-articulatory sign language translation,” in Computer Vision–ECCV 2020
Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, Part IV 16, pp. 301–
319, Springer, 2020.

[67] K. Yin and J. Read, “Better sign language translation with stmc-transformer,”
arXiv preprint arXiv:2004.00588, 2020.

[68] Y. Liu, J. Gu, N. Goyal, X. Li, S. Edunov, M. Ghazvininejad, M. Lewis, and
L. Zettlemoyer, “Multilingual denoising pre-training for neural machine trans-
lation,” Transactions of the Association for Computational Linguistics, vol. 8,
pp. 726–742, 2020.



Final Capstone Project 50 of 53

[69] Q. Xiao, M. Qin, and Y. Yin, “Skeleton-based chinese sign language recognition
and generation for bidirectional communication between deaf and hearing people,”
Neural networks, vol. 125, pp. 41–55, 2020.

[70] B. Saunders, N. C. Camgoz, and R. Bowden, “Everybody sign now: Trans-
lating spoken language to photo realistic sign language video,” arXiv preprint
arXiv:2011.09846, 2020.

[71] C. Chan, S. Ginosar, T. Zhou, and A. A. Efros, “Everybody dance now,” in Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 5933–5942,
2019.

[72] B. Saunders, N. C. Camgoz, and R. Bowden, “Signing at scale: Learning to co-
articulate signs for large-scale photo-realistic sign language production,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 5141–5151, 2022.

[73] T. Hanke, L. König, S. Wagner, and S. Matthes, “Dgs corpus & dicta-sign: The
hamburg studio setup,” in sign-lang@ LREC 2010, pp. 106–109, European Lan-
guage Resources Association (ELRA), 2010.

[74] W. Huang, W. Pan, Z. Zhao, and Q. Tian, “Towards fast and high-quality sign
language production,” in Proceedings of the 29th ACM International Conference
on Multimedia, pp. 3172–3181, 2021.

[75] D. Bragg, O. Koller, M. Bellard, L. Berke, P. Boudreault, A. Braffort, N. Caselli,
M. Huenerfauth, H. Kacorri, T. Verhoef, et al., “Sign language recognition, gen-
eration, and translation: An interdisciplinary perspective,” in Proceedings of the
21st International ACM SIGACCESS Conference on Computers and Accessibility,
pp. 16–31, 2019.

[76] V. Athitsos, C. Neidle, S. Sclaroff, J. Nash, A. Stefan, Q. Yuan, and A. Thangali,
“The american sign language lexicon video dataset,” in 2008 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–8,
IEEE, 2008.

[77] U. Von Agris, M. Knorr, and K.-F. Kraiss, “The significance of facial features for
automatic sign language recognition,” in 2008 8th IEEE international conference
on automatic face & gesture recognition, pp. 1–6, IEEE, 2008.

[78] R. Wilbur and A. C. Kak, “Purdue rvl-slll american sign language database,” 2006.

[79] M. Zahedi, D. Keysers, T. Deselaers, and H. Ney, “Combination of tangent dis-
tance and an image distortion model for appearance-based sign language recogni-
tion,” in Pattern Recognition: 27th DAGM Symposium, Vienna, Austria, August
31-September 2, 2005. Proceedings 27, pp. 401–408, Springer, 2005.

[80] P. Dreuw, D. Rybach, T. Deselaers, M. Zahedi, and H. Ney, “Speech recognition
techniques for a sign language recognition system,” hand, vol. 60, p. 80, 2007.

[81] U. von Agris and K.-F. Kraiss, “Signum database: Video corpus for signer-
independent continuous sign language recognition,” in sign-lang@ LREC 2010,



Final Capstone Project 51 of 53

pp. 243–246, European Language Resources Association (ELRA), 2010.

[82] A. Schembri, J. Fenlon, R. Rentelis, S. Reynolds, and K. Cormier, “Building the
british sign language corpus,” 2013.

[83] A. Braffort, L. Bolot, E. Chételat-Pelé, A. Choisier, M. Delorme, M. Filhol,
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