dc.contributor.advisor | Bùi, Thị Loan | |
dc.contributor.advisor | Phan, Duy Hùng | |
dc.contributor.author | Trần, Anh Quân | |
dc.date.accessioned | 2021-07-01T01:42:47Z | |
dc.date.available | 2021-07-01T01:42:47Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | /handle/123456789/3016 | |
dc.description | Thesis: 41 pages | en_US |
dc.description.abstract | This work presents a supervised speech enhancement method using a deep convolutional neural network (CNN). The proposed CNN is based on a Convolutional Autoencoder architecture with symmetric skip-connections. Additionally, we focus on building a novel and robust dataset for this task. The data contains a clean speech dataset and a noise dataset, and each outweighs its counterpart used in recent works. Finally, we investigate the performance of the system on many levels of noise by performing the evaluation using objective metrics that are commonly used in this area. | en_US |
dc.language.iso | en | en_US |
dc.publisher | FPTU Hà Nội | en_US |
dc.subject | Computer Science | en_US |
dc.subject | Speech enhancement | en_US |
dc.subject | Speech denoising | en_US |
dc.subject | Convolutional Neural Network | en_US |
dc.subject | Convolutional Autoencoder | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Unet | en_US |
dc.title | Speech Enhancement using Deep Convolutional Neural Network | en_US |
dc.type | Working Paper | en_US |
Bộ sưu tập thuộc về Trung tâm Thông tin - Thư viện - Trường Đại học FPT
Địa chỉ: Phòng 207 - Tầng 1 - Km 28 - Khu công nghệ cao Hòa Lạc - Thạch Hòa - Thạch Thất - Hà Nội
Điện thoại: 844.66805912 - FAX: - Email: thuvien_fu_hoalac@fpt.edu.vn