BỘ SƯU TẬP TÀI NGUYÊN SỐ THƯ VIỆN TRƯỜNG ĐẠI HỌC FPT

Trang chủ Quay lại

Appearance-Motion Co-memory Network for Video Anomaly Detection

Show simple item record

dc.contributor.advisor Phan, Duy Hùng
dc.contributor.author Lê, Đức Anh
dc.contributor.author Nguyễn, Bá Dương
dc.date.accessioned 2021-07-01T02:15:50Z
dc.date.available 2021-07-01T02:15:50Z
dc.date.issued 2021
dc.identifier.uri /handle/123456789/3020
dc.description Thesis: 46 pages en_US
dc.description.abstract Recently, video anomaly detection is currently a challenge and has attracted much attention from many researchers, which apply in the variation field like traffic accident detection, violence detection, intrusion detection systems, surveillance systems. The most common approach adopted the convolutional autoencoder that fused with appearance and motion representation to enhance the model’s ability to describe each ordinary object’s spatial and temporal behavior and quantifies the predicted error during the testing process. However, the drawback of this approach is the limit number of normal patterns which a model can learn. When training with a considerable amount of normal data, information about the normal pattern recorded in the hidden cells will be compressed, leading to missing or misleading information. This limitation is handled by a completely new improved model that applies memory modules to both the motion-appearance network and shares the same encoder, decoder. The testing on the two public datasets has shown that our model is efficient and indicates significant results improvements. en_US
dc.language.iso en en_US
dc.publisher FPTU Hà Nội en_US
dc.subject Computer Science en_US
dc.subject Co-memory network en_US
dc.subject Video Anomaly Detection en_US
dc.subject Optical Flow Estimation en_US
dc.subject Frame Prediction en_US
dc.title Appearance-Motion Co-memory Network for Video Anomaly Detection en_US
dc.type Working Paper en_US


Các tập tin trong tài liệu này

Tài liệu này xuất hiện trong Bộ sưu tập

Show simple item record


 

Bộ sưu tập thuộc về Trung tâm Thông tin - Thư viện - Trường Đại học FPT
Địa chỉ: Phòng 207 - Tầng 1 - Km 28 - Khu công nghệ cao Hòa Lạc - Thạch Hòa - Thạch Thất - Hà Nội
Điện thoại: 844.66805912 - FAX: - Email: thuvien_fu_hoalac@fpt.edu.vn