BỘ SƯU TẬP TÀI NGUYÊN SỐ THƯ VIỆN TRƯỜNG ĐẠI HỌC FPT

Trang chủ Quay lại

Offline Handwritten Signature Forgery Detection using Deep Learning Methods

Show simple item record

dc.contributor.advisor Phan, Duy Hùng
dc.contributor.author Phạm, Sơn Bách
dc.contributor.author Nguyễn, Huy Đức
dc.date.accessioned 2021-09-20T11:43:38Z
dc.date.available 2021-09-20T11:43:38Z
dc.date.issued 2021
dc.identifier.uri /handle/123456789/3137
dc.description.abstract Offline signature verification is one of the most challenging tasks in biometric authentication. Despite recent advances in this field using image recognition and deep learning, there are many remaining things to be explored. The most recent technique, which is Siamese Convolutional Neural Network, has been used a lot in this field and has achieved great results. In this thesis, we develop an architecture that combines the power of Siamese Triplet CNN and a stack Fully connected neural network for binary classification to automatically verify genuine and forgery signatures even if the forged signature is highly skilled. In the challenging public dataset for signature verification BHSig260, our model can achieve a low FAR = 13.66, which is slightly better than the SigNet model. Once the final model is trained, the one-shot learning should make it possible to determine if the input image is genuine or fraudulent just from one base image. Therefore, our model is expected to be extremely suitable for practical problems, such as banking systems or mobile authentication applications..., in which the amount of data for each identity is limited in quantity and variety. en_US
dc.language.iso en en_US
dc.publisher FPTU Hà Nội en_US
dc.subject Computer Science en_US
dc.subject Deep Learning en_US
dc.subject Handwritten Signature en_US
dc.subject Offline signature verification en_US
dc.subject One-shot learning en_US
dc.subject Siamese Convolutional Neural Network en_US
dc.subject Triplet loss en_US
dc.title Offline Handwritten Signature Forgery Detection using Deep Learning Methods en_US
dc.type Working Paper en_US


Các tập tin trong tài liệu này

Tài liệu này xuất hiện trong Bộ sưu tập

Show simple item record


 

Bộ sưu tập thuộc về Trung tâm Thông tin - Thư viện - Trường Đại học FPT
Địa chỉ: Phòng 207 - Tầng 1 - Km 28 - Khu công nghệ cao Hòa Lạc - Thạch Hòa - Thạch Thất - Hà Nội
Điện thoại: 844.66805912 - FAX: - Email: thuvien_fu_hoalac@fpt.edu.vn