dc.contributor.advisor | Đỗ, Thái Giang | |
dc.contributor.author | Phạm, Việt Dương | |
dc.contributor.author | Đỗ, Hữu Đại | |
dc.date.accessioned | 2023-05-21T07:46:55Z | |
dc.date.available | 2023-05-21T07:46:55Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | http://ds.libol.fpt.edu.vn/handle/123456789/3681 | |
dc.description.abstract | The proposed car damage detection system follows a multi-stage cascade approach, where each stage consists of a classifier and a bounding box regressor. The system leverages the Cascade Mask R-CNN architecture with a Swin-FPN backbone, which provides multi-scale contextual information for accurate and robust object detection. The system is trained on a large dataset of labeled car images, including various types of car damages such as dents, scratches, cracks..., to learn the discriminative features for car damage detection. To evaluate the performance of the proposed system, extensive experiments are conducted on a benchmark dataset of car images with ground-truth car damage annotations. The results show that the Cascade Mask R-CNN-based car damage detection system achieves good performance in terms of detection accuracy and computational efficiency. The proposed system is able to accurately localize and segment car damages in images | en_US |
dc.language.iso | en | en_US |
dc.publisher | FPTU Hà Nội | en_US |
dc.subject | Artificial Intelligence | en_US |
dc.subject | Car | en_US |
dc.subject | Car damaged | en_US |
dc.subject | Car evaluation | en_US |
dc.title | Car damaged detection and evaluation | en_US |
dc.title.alternative | Phát hiện và đánh giá độ hư hỏng xe ô tô | en_US |
dc.type | Thesis | en_US |
Bộ sưu tập thuộc về Trung tâm Thông tin - Thư viện - Trường Đại học FPT
Địa chỉ: Phòng 207 - Tầng 1 - Km 28 - Khu công nghệ cao Hòa Lạc - Thạch Hòa - Thạch Thất - Hà Nội
Điện thoại: 844.66805912 - FAX: - Email: thuvien_fu_hoalac@fpt.edu.vn