BỘ SƯU TẬP TÀI NGUYÊN SỐ THƯ VIỆN TRƯỜNG ĐẠI HỌC FPT

Trang chủ Quay lại

Discovering prevalent co-location patterns in different density spatial data without distance thresholds

Show simple item record

dc.contributor.advisor Le, Dinh Huynh
dc.contributor.author Tran, Duy Hai
dc.contributor.author Le, Anh Thang
dc.contributor.author Ha, Trong Nguyen
dc.date.accessioned 2023-09-17T02:57:57Z
dc.date.available 2023-09-17T02:57:57Z
dc.date.issued 2023
dc.identifier.uri http://ds.libol.fpt.edu.vn/handle/123456789/3785
dc.description.abstract A prevalent spatial co-location pattern (PSCP) refers to a group of different features that their instances occur frequently within a spatial neighborhood. The neighbor of instances is typically evaluated based on the spatial separation between them. If the spatial separation is not greater than a threshold value set by users, they are considered to be neighboring each other. However, determining an appropriate distance threshold for each specific spatial dataset is challenging for users, as it requires careful analysis of the dataset. To address the issue, we propose an algorithm called Delaunay triangulation k-order clique (DTkC) to discover PSCPs without distance thresholds. This algorithm integrates three phases: the spatial neighbor hierarchy structure of instances is created by Delaunay triangulation, employing k-order neighbors allows users to select an appropriate level from the neighbor structure, a clique-based approach is designed to store compactly neighboring instances and quickly collect co-location instances of each candidate pattern to filter PSCPs. We conducted experimental analysis on both synthetic and real-world datasets, to demonstrate the effectiveness of the DTkC algorithm in terms of generating the number of PSCPs, execution time, and memory consumption. en_US
dc.language.iso en en_US
dc.publisher FPTU Hà Nội en_US
dc.subject Artificial Intelligence en_US
dc.subject Computer Science en_US
dc.subject Prevalent spatial co-location pattern en_US
dc.subject Delaunay triangulation en_US
dc.subject K-order neighbos en_US
dc.subject Cliques en_US
dc.title Discovering prevalent co-location patterns in different density spatial data without distance thresholds en_US
dc.title.alternative Phát hiện các mô hình đồng vị từ dữ liệu không gian với mật độ khác nhau không cần thiết đặt ngưỡng khoảng cách en_US
dc.type Thesis en_US


Các tập tin trong tài liệu này

Tài liệu này xuất hiện trong Bộ sưu tập

Show simple item record


 

Bộ sưu tập thuộc về Trung tâm Thông tin - Thư viện - Trường Đại học FPT
Địa chỉ: Phòng 207 - Tầng 1 - Km 28 - Khu công nghệ cao Hòa Lạc - Thạch Hòa - Thạch Thất - Hà Nội
Điện thoại: 844.66805912 - FAX: - Email: thuvien_fu_hoalac@fpt.edu.vn