Effective High Utility Itemsets Mining Algorithm for Incremental Database

Show simple item record

dc.contributor.advisor Phan, Duy Hùng
dc.contributor.author Đỗ, Thành Công
dc.contributor.author Đỗ, Mai Phương
dc.contributor.author Phạm, Đức Dương
dc.date.accessioned 2024-02-23T03:25:24Z
dc.date.available 2024-02-23T03:25:24Z
dc.date.issued 2023
dc.identifier.uri http://ds.libol.fpt.edu.vn/handle/123456789/3994
dc.description.abstract High-utility itemset mining (HUIM) majors have done a lot of research lately, the past few years. Almost all published algorithms focus on processing static databases, which do not utilize previously mined information to mine incremental databases. To solve this problem, some incremental HUIM algorithms were published and showed the possibility of development. In this study, a new algorithm named iHUIM based on the EIHI algorithm was improved. Unlike EIHI, which requires twice database scans, the iHUIM just scans the database only once. Additionally, using compact utility lists and some pruning strategies, iHUIM shows outperformance EIHI regarding the length of execution time and has a slight improvement in memory consumption. en_US
dc.language.iso en en_US
dc.publisher FPTU Hà Nội en_US
dc.subject Trí tuệ nhân tạo en_US
dc.subject Artificial Intelligence en_US
dc.subject Compact Utility List en_US
dc.subject High-utility Itemset Mining en_US
dc.subject Incremental Databases en_US
dc.subject Data Mining en_US
dc.subject Database en_US
dc.title Effective High Utility Itemsets Mining Algorithm for Incremental Database en_US
dc.title.alternative Thuật toán khai phá dữ liệu có độ hiệu dụng cao hiệu quả đối với cơ sở dữ liệu tăng trưởng en_US
dc.type Thesis en_US


Các tập tin trong tài liệu này

Tài liệu này xuất hiện trong Bộ sưu tập

Show simple item record