- Tài khoản và mật khẩu chỉ cung cấp cho sinh viên, giảng viên, cán bộ của TRƯỜNG ĐẠI HỌC FPT
- Hướng dẫn sử dụng: Xem Video .
- Danh mục tài liệu mới: Tại đây .
- Đăng nhập : Tại đây .
SỐ LƯỢT TRUY CẬP


accurate visitors web counter
Visits Counter
FPT University|e-Resources > Đồ án tốt nghiệp (Dissertations) > Khoa học máy tính - Trí tuệ nhân tạo >
Please use this identifier to cite or link to this item: http://ds.libol.fpt.edu.vn/handle/123456789/3782

Title: Using Contrastive Learning for Aspect Detection with Vietnamese Dataset
Other Titles: Sử dụng phương pháp học đối lập trong phân loại khía cạnh bình luận với dữ liệu tiếng việt
Authors: Bùi, Văn Hiệu
Lê, Phước Cường
Trịnh, Hoàng Nam
Keywords: Artificial Intelligence
Aspect Detection
Vietnamese Dataset
Contrastive Learning
Issue Date: 2023
Publisher: FPTU Hà Nội
Abstract: Customer reviews for a business are extremely important because they provide valuable insights, and impact the customer’s decision-making process and the customer experience after a purchase. Determining the aspect of the reviews, which makes business easier to analyze, is a difficult problem because each review has a different writing style, many grammatical errors, and often contains acronyms. Unsupervised aspect detection (UAD) strives to automatically extract understandable facets and pinpoint segments that are specific to these facets from online reviews. However, because of the difference between syllables and accents in Vietnamese, automatically extracting aspects in reviews is a challenging task. To address aspect detection issues in the context of Vietnamese text, in this thesis, we will propose an approach that combines contrastive learning with aspect detection. Specifically, we generate aspects for similar word clusters followed by the model is encouraged to differentiate between them and capture distinctive features by measuring the similarity between pairs of samples in the Vietnamese dataset. This enables the model to generate high-quality representations for aspects and their corresponding text segments. Furthermore, this thesis builds upon the experimental methods used by previous studies such as Smooth self-attention (SSA) and High-resolution selective mapping (HRSMap) to further enhance the performance of aspect detection in the context of Vietnamese text. We achieved relatively good results for the 4 "golden" aspects, averaging around 0.73 for F1-score
URI: http://ds.libol.fpt.edu.vn/handle/123456789/3782
Appears in Collections:Khoa học máy tính - Trí tuệ nhân tạo

Files in This Item:

File Description SizeFormat
Using-Contrastive-Learning_Report.pdfFree6 MBAdobe PDF book.png
View/Open
Using-Contrastive-Learning_slide.pdfFree6.61 MBAdobe PDF book.png
View/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  Collections Copyright © FPT University

FSE Hoa Lac Library

Add : Room 107, 1st floor, Hoa Lac campus, Km28 Thang Long Avenue, Hoa Lac Hi-Tech Park

Office tel: + 844.66805912  / Email :  thuvien_fu_hoalac@fpt.edu.vn

 - Feedback