- Tài khoản và mật khẩu chỉ cung cấp cho sinh viên, giảng viên, cán bộ của TRƯỜNG ĐẠI HỌC FPT
- Hướng dẫn sử dụng:
Xem Video
.
- Danh mục tài liệu mới:
Tại đây
.
-
Đăng nhập
:
Tại đây
.
Đồ án tốt nghiệp Capstone Project Artificial Intelligence Trí tuệ nhân tạo Detection UAV Nhận dạng SP24AI05
Issue Date:
2024
Publisher:
FPTU HCM
Abstract:
This paper proposes an improved YOLOv5 algorithm for small object detection in unmanned aerial vehicle (UAV) images. Several modifications are
made to enhance the model’s performance, including adding a prediction head
to handle large-scale variance, integrating a Channel Feature Fusion with an
Involution (CFFI) block to reduce information loss, applying a Convolutional
Block Attention Module (CBAM) to focus on important spatial and channel
features, and using a C3 structure with a Transformer block (C3TR) to capture contextual information. The proposed method also employs Soft NonMaximum Suppression for improved bounding box scoring in dense scenes.
Extensive experiments on the VisDrone2019 dataset demonstrate the effectiveness of these modifications, with the enhanced model outperforming other
single-stage detectors and state-of-the-art single-stage detectors like YOLOv8s
by a significant margin in terms of mean Average Precision (mAP). Achieving
a notable mAP50 of 44.2% and mAP50:95 of 27.3% on the test set. The performance gains are attributed to the integration of attention mechanisms that help the model focus on crucial features for detecting small objects.