- Tài khoản và mật khẩu chỉ cung cấp cho sinh viên, giảng viên, cán bộ của TRƯỜNG ĐẠI HỌC FPT
- Hướng dẫn sử dụng: Xem Video .
- Danh mục tài liệu mới: Tại đây .
- Đăng nhập : Tại đây .
SỐ LƯỢT TRUY CẬP


accurate visitors web counter
Visits Counter
FPT University|e-Resources > Đồ án tốt nghiệp (Dissertations) > Khoa học máy tính - Trí tuệ nhân tạo >
Please use this identifier to cite or link to this item: http://ds.libol.fpt.edu.vn/handle/123456789/3675

Title: Fruit type and weight recognition for payment purposes using computer vision
Other Titles: Nhận biết hoa quả và cân nặng cho mục đích thanh toán sử dụng thị giác máy tính
Authors: Bùi, Văn Hiệu
Nguyễn, Ngọc Bách
Lê, Minh Chí
Bùi, Văn Phúc
Keywords: Artificial Intelligence
Fruit
Computer vision
Payment
Weight processing
Image classification
Convolution Neural Network
IOT
Issue Date: 2023
Publisher: FPTU Hà Nội
Abstract: Nowadays, retailers and supermarkets are still selling fruit manually, employees must memorize fruit types, scale weight, and then print out a QR (quick response) code containing price and other details. Having to remember every type of fruit will lead to sellers having some mistakes and giving the wrong estimation. In this work, a novel solution is proposed to solve that problem using computer vision together with the connectivity of digital scales and a webcam. The objective is to make the process of giving prices be done with minimum human effort. To achieve that, Computer vision is used in checkout systems for scanning fruit. The idea of this work is to calculate the price of fruit by recognizing the fruit categories by scanning one or multiple objects of the same type in a specific condition and together with weight value from the scale. Fruit recognition in retail is challenging work due to features such as intensity, color, shape, and texture. To predict fruit, a CNN network is used with DenseNet201, the purpose is to make the application process faster. To process the weight directly, an IoT weight sensor, which can connect and send values to other devices namely computers, is needed in combination with a camera for identifying purposes. Unfortunately, such a type of scale is not available in the common marketplace and we have to build our own using a load cell, an HX711 module, and an Arduino Uno. The model reached the best accuracy score of 99.62% and the application takes around 300ms for the result.
URI: http://ds.libol.fpt.edu.vn/handle/123456789/3675
Appears in Collections:Khoa học máy tính - Trí tuệ nhân tạo

Files in This Item:

File Description SizeFormat
Report_Fruit_type.pdfFree5.83 MBAdobe PDF book.png
View/Open
Slide_Fruit_type.pdfFree13.67 MBAdobe PDF book.png
View/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  Collections Copyright © FPT University

FSE Hoa Lac Library

Add : Room 107, 1st floor, Hoa Lac campus, Km28 Thang Long Avenue, Hoa Lac Hi-Tech Park

Office tel: + 844.66805912  / Email :  thuvien_fu_hoalac@fpt.edu.vn

 - Feedback