- Tài khoản và mật khẩu chỉ cung cấp cho sinh viên, giảng viên, cán bộ của TRƯỜNG ĐẠI HỌC FPT
- Hướng dẫn sử dụng: Xem Video .
- Danh mục tài liệu mới: Tại đây .
- Đăng nhập : Tại đây .
SỐ LƯỢT TRUY CẬP


accurate visitors web counter
Visits Counter
FPT University|e-Resources > Đồ án tốt nghiệp (Dissertations) > Khoa học máy tính - Trí tuệ nhân tạo >
Please use this identifier to cite or link to this item: http://ds.libol.fpt.edu.vn/handle/123456789/3996

Title: Extract Information from Vietnamese ID Card Images
Other Titles: Trích xuất thông tin từ căn cước công dân
Authors: Đỗ, Thái Giang
Đỗ, Công Duy
Vũ, Đoan Quang
Vũ, Hoàng Tài Toàn
Keywords: Trí tuệ nhân tạo
Artificial Intelligence
OCR
ID Card
Vietnamese ID Card
Information Extraction
Issue Date: 2023
Publisher: FPTU Hà Nội
Abstract: The efficient extraction of information from ID cards is vital for various daily services, such as legal, banking, insurance, and medical processes. Nevertheless, in numerous developing countries nations like Vietnam, this task is predominantly manual, resulting in time-consuming, monotonous, and error-prone processes. This thesis presents a deep learning system specifically designed to extract information from images of Vietnamese ID cards. The proposed system involves three sequential steps: ID card alignment algorithm, text detection and text recognition. The initial step incorporates two neural networks, YOLACT and ResNet50 for segmentation and classification model, alongside an image processing technique. The second step employs YOLOv7 for text detection. The third step is to utilize VietOCR based on Attention OCR for recognizing Vietnamese optical text on the cards. In experimental evaluations, the proposed system demonstrates a notable reduction in processing time, especially in scenarios where corners of the ID card are obstructed. It effectively addresses challenges when compared to existing methodologies, achieving a high mAP@[0.5:0.95] for box is 97.21 % and mask is 99.58 % for ID card segmentation, 74.0 % for text detection. The system also exhibits exceptional precision score for full-sentence with recognition rates of 98.19 % for Vietnamese optical texts and 97.60 % for the ID card classification model. Overall, our implementation of the proposed method achieves an average system-wide accuracy rate about 97.98 %.
URI: http://ds.libol.fpt.edu.vn/handle/123456789/3996
Appears in Collections:Khoa học máy tính - Trí tuệ nhân tạo

Files in This Item:

File Description SizeFormat
Report-Extract-information.pdfFree2.21 MBAdobe PDF book.png
View/Open
Slide-Extract-information.pdfFree19.57 MBAdobe PDF book.png
View/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  Collections Copyright © FPT University

FSE Hoa Lac Library

Add : Room 107, 1st floor, Hoa Lac campus, Km28 Thang Long Avenue, Hoa Lac Hi-Tech Park

Office tel: + 844.66805912  / Email :  thuvien_fu_hoalac@fpt.edu.vn

 - Feedback